Intestinal Signaling Pathways Required for the Regulation of Toxicity of Environmental Toxicants or Stresses

  • Dayong Wang


In this chapter, we focused on the introduction of intestinal signaling pathways involved in the regulation of toxicity of environmental toxicants or stresses. We first introduced the intestinal p38 MAPK, insulin, development-related, and metabolism-related signaling pathways involved in the regulation of toxicity of environmental toxicants or stresses. Moreover, we introduced the potential important roles of intestinal G-protein-coupled receptors (GPCRs) and G proteins, cytoplasmic signals (protein kinase D (PKD), mitochondrial UPR, endoplasmic reticulum (ER) UPR, autophagy, and transcriptional factors), and epigenetic signals (microRNAs and long noncoding RNAs) in regulating the toxicity of environmental toxicants or stresses. The potential effect of intestinal signals on function of neurons in nematodes exposed to environmental toxicants or stresses was further introduced and discussed.


Intestinal signaling pathway Molecular mechanism Environmental exposure Caenorhabditis elegans 


  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Wang D-Y (2018) Molecular toxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  3. 3.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  4. 4.
    Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102CrossRefGoogle Scholar
  5. 5.
    Wang D-Y, Yu Y-L, Li Y-X, Wang Y, Wang D-Y (2014) Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS One 9:e115985CrossRefGoogle Scholar
  6. 6.
    Li Y-X, Wang Y, Hu Y-O, Zhong J-X, Wang D-Y (2011) Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans. Neurosci Bull 27:69–82CrossRefGoogle Scholar
  7. 7.
    Ruan Q-L, Qiao Y, Zhao Y-L, Xu Y, Wang M, Duan J-A, Wang D-Y. (2016) Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. J Ethnopharmacol 177: 101–110CrossRefGoogle Scholar
  8. 8.
    Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857CrossRefGoogle Scholar
  9. 9.
    Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y (2016) p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10:1469–1479CrossRefGoogle Scholar
  10. 10.
    Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757CrossRefGoogle Scholar
  11. 11.
    Papp D, Csermely P, Sőti C (2012) A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog 8:e1002673CrossRefGoogle Scholar
  12. 12.
    Sun L-M, Liao K, Hong C-C, Wang D-Y (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12:e0172228CrossRefGoogle Scholar
  13. 13.
    Sun L-M, Liao K, Wang D-Y (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12:e0184003CrossRefGoogle Scholar
  14. 14.
    Sun L-M, Liao K, Li Y-P, Zhao L, Liang S, Guo D, Hu J, Wang D-Y (2016) Synergy between PVP-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol 16:2325–2335CrossRefGoogle Scholar
  15. 15.
    Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036CrossRefGoogle Scholar
  16. 16.
    van der Hoeven R, McCallum KC, Cruz MR, Garsin DA (2011) Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog 7:e1002453CrossRefGoogle Scholar
  17. 17.
    Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology.
  18. 18.
    Zhao Y-L, Yang R-L, Rui Q, Wang D-Y (2016) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024CrossRefGoogle Scholar
  19. 19.
    Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11:578–590CrossRefGoogle Scholar
  20. 20.
    Chavez V, Mohri-Shiomi A, Maadani A, Vega LA, Garsin DA (2007) Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176:1567–1577CrossRefGoogle Scholar
  21. 21.
    Yang R-L, Ren M-X, Rui Q, Wang D-Y (2016) A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep 6:32214CrossRefGoogle Scholar
  22. 22.
    Zhuang Z-H, Li M, Liu H, Luo L-B, Gu W-D, Wu Q-L, Wang D-Y (2016) Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409CrossRefGoogle Scholar
  23. 23.
    Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Molecular signals regulating translocation and toxicity of graphene oxide in nematode Caenorhabditis elegans. Nanoscale 6:11204–11212CrossRefGoogle Scholar
  24. 24.
    Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C elegans. Nature 389:994–999CrossRefGoogle Scholar
  25. 25.
    Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038CrossRefGoogle Scholar
  26. 26.
    Qu M, Li Y-H, Wu Q-L, Xia Y-K, Wang D-Y (2017) Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 11:520–533CrossRefGoogle Scholar
  27. 27.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152CrossRefGoogle Scholar
  28. 28.
    Lee D, Jeong DE, Son HG, Yamaoka Y, Kim H, Seo K, Khan AA, Roh TY, Moon DW, Lee Y, Lee SJ (2015) SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 29:2490–2503CrossRefGoogle Scholar
  29. 29.
    Pukkila-Worley R, Feinbaum RL, McEwan DL, Conery AL, Ausubel FM (2014) The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification. PLoS Pathog 10:e1004143CrossRefGoogle Scholar
  30. 30.
    Nandakumar M, Tan M-W (2008) Gamma-linolenic and stearidonic acids are required for basal immunity in Caenorhabditis elegans through their effects on p38 MAP kinase activity. PLoS Genet 4:e1000273CrossRefGoogle Scholar
  31. 31.
    Powell JR, Kim DH, Ausubel FM (2009) The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc Natl Acad Sci U S A 106:2782–2787CrossRefGoogle Scholar
  32. 32.
    Kawli T, Wu C, Tan M (2010) Systemic and cell intrinsic roles of Gqα signaling in the regulation of innate immunity, oxidative stress, and longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107:13788–13793CrossRefGoogle Scholar
  33. 33.
    Ren M, Feng H, Fu Y, Land M, Rubin CS (2009) Protein kinase D (DKF-2), a diacylglycerol effector, is an essential regulator of C. elegans innate immunity. Immunity 30:521–532CrossRefGoogle Scholar
  34. 34.
    Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ, Haynes CM (2014) Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516:414–417CrossRefGoogle Scholar
  35. 35.
    Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2001) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96CrossRefGoogle Scholar
  36. 36.
    Bischof LJ, Kao C-Y, Los FCO, Gonzalez MR, Shen Z, Briggs SP, van der Goot FG, Aroian RV (2008) Activation of the unfolded protein reponse is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog 4:e1000176CrossRefGoogle Scholar
  37. 37.
    Kozlowski L, Garvis S, Bedet C, Palladino F (2014) The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 111:5956–5961CrossRefGoogle Scholar
  38. 38.
    Zou C, Ma Y, Dai L, Zhang K (2014) Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection. Proc Natl Acad Sci U S A 111:12480–12485CrossRefGoogle Scholar
  39. 39.
    Visvikis O, Ihuegbu N, Labed SA, Luhachack LG, Alves AF, Wollenberg AC, Stuart LM, Stormo GD, Irazoqui JE (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40:896–909CrossRefGoogle Scholar
  40. 40.
    Chen H, Kao C, Liu B, Huang S, Kuo C, Ruan J, Lin Y, Huang C, Chen Y, Wang H, Aroian RV, Chen C (2017) HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans. Autophagy 13:371–385CrossRefGoogle Scholar
  41. 41.
    Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A 106:14564–14569CrossRefGoogle Scholar
  42. 42.
    Inoue H, Nishida E (2010) The DM domain transcription factor MAB-3 regulates male hypersensitivity to oxidative stress in Caenorhabditis elegans. Mol Cell Biol 30:3453–3459CrossRefGoogle Scholar
  43. 43.
    Elliott SL, Sturgeon CR, Travers DM, Montgomery MC (2011) Mode of bacterial pathogenesis determines phenotype in elt-2 and elt-7 RNAi Caenorhabditis elegans. Dev Comp Immunol 35:521–524CrossRefGoogle Scholar
  44. 44.
    Block DHS, Twumasi-Boateng K, Kang HS, Carlisle JA, Hanganu A, Lai TY-J, Shapira M (2015) The developmental intestinal regulator ELT-2 controls p38-dependent immune responses in adult C. elegans. PLoS Genet 11:e1005265CrossRefGoogle Scholar
  45. 45.
    Dunbar TL, Yan Z, Balla KM, Smelkinson MG, Troemel ER (2012) C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe 11:375–386CrossRefGoogle Scholar
  46. 46.
    McEwan DL, Feinbaum RL, Stroustrup N, Haas W, Conery AL, Anselmo A, Sadreyev R, Ausubel FM (2016) Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway. BMC Biol 14:105CrossRefGoogle Scholar
  47. 47.
    Kato M, Kashem MA, Cheng C (2016) An intestinal microRNA modulates the homeostatic adaptation to chronic oxidative stress in C. elegans. Aging 8:1979–2005CrossRefGoogle Scholar
  48. 48.
    Dai L, Gao J, Zou C, Ma Y, Zhang K (2015) mir-233 modulates the unfolded protein response in C. elegans during Pseudomonas aeruginosa infection. PLoS Pathog 11:e1004606CrossRefGoogle Scholar
  49. 49.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560CrossRefGoogle Scholar
  50. 50.
    Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291CrossRefGoogle Scholar
  51. 51.
    Chikka MR, Anbalagan C, Dvorak K, Dombeck K, Prahlad V (2016) The mitochondria-regulated immune pathway activated in the C. elegans intestine is neuroprotective. Cell Rep 16:2399–2414CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations