Epidermal Barrier for Nematodes Against Toxicity of Environmental Toxicants or Stresses

  • Dayong Wang


The C. elegans epidermis, a single epithelial layer surrounding the animal, is a potential model skin. The epidermal barrier is another important primary biological barrier for nematodes against the toxicity of environmental toxicants or stresses. We here mainly introduced and discussed the molecular basis of epidermal barrier against the toxicity of environmental toxicants or stresses. The association between epidermal barrier and activation of innate immune response was also discussed.


Epidermal barrier Molecular basis Protection function Environmental exposure Caenorhabditis elegans 


  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Wang D-Y (2018) Molecular toxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  3. 3.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734CrossRefGoogle Scholar
  4. 4.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  5. 5.
    Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102CrossRefGoogle Scholar
  6. 6.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450CrossRefGoogle Scholar
  7. 7.
    Wang D-Y, Yu Y-L, Li Y-X, Wang Y, Wang D-Y (2014) Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS One 9:e115985CrossRefGoogle Scholar
  8. 8.
    Li Y-X, Wang Y, Hu Y-O, Zhong J-X, Wang D-Y (2011) Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans. Neurosci Bull 27:69–82CrossRefGoogle Scholar
  9. 9.
    Ruan Q-L, Qiao Y, Zhao Y-L, Xu Y, Wang M, Duan J-A, Wang D-Y. (2016) Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. J Ethnopharmacol 177: 101–110CrossRefGoogle Scholar
  10. 10.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26CrossRefGoogle Scholar
  11. 11.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126CrossRefGoogle Scholar
  12. 12.
    Zhi L-T, Fu W, Wang X, Wang D-Y (2016) ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–4159CrossRefGoogle Scholar
  13. 13.
    Zhao Y-L, Yu X-M, Jia R-H, Yang R-L, Rui Q, Wang D-Y (2015) Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci Rep 5:17233CrossRefGoogle Scholar
  14. 14.
    Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y (2016) p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10:1469–1479CrossRefGoogle Scholar
  15. 15.
    Chisholm AD, Hardin J (2005) Epidermal morphogenesis. WormBook.
  16. 16.
    Chisholm AD, Hsiao TI (2012) The C. elegans epidermis as a model skin. I: development, patterning, and growth. Wiley Interdiscip Rev Dev Biol 1:861–878CrossRefGoogle Scholar
  17. 17.
    Chisholm AD, Xu S (2012) The C. elegans epidermis as a model skin. II: differentiation and physiological roles. Wiley Interdiscip Rev Dev Biol 1:879–902CrossRefGoogle Scholar
  18. 18.
    Chin-Sang ID, Chisholm AD (2000) Form of the worm: genetics of epidermal morphogenesis in C. elegans. Trends Genet 16:544–551CrossRefGoogle Scholar
  19. 19.
    Kage-Nakadai E, Kobuna H, Kimura M, Gengyo-Ando K, Inoue T, Arai H, Mitani S (2010) Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans. PLoS One 5:e8857CrossRefGoogle Scholar
  20. 20.
    Wu Q-L, Rui Q, He K-W, Shen L-L, Wang D-Y (2010) UNC-64 and RIC-4, the plasma membrane associated SNAREs syntaxin and SNAP-25, regulate fat storage in nematode Caenorhabditis elegans. Neurosci Bull 26:104–116CrossRefGoogle Scholar
  21. 21.
    Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757CrossRefGoogle Scholar
  22. 22.
    Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology.
  23. 23.
    Wang Q-Q, Zhao S-Q, Zhao Y-L, Rui Q, Wang D-Y (2014) Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv 4:60891–60901CrossRefGoogle Scholar
  24. 24.
    Thein MC, Winter AD, Stepek G, McCormack G, Stapleton G, Johnstone IL, Page AP (2009) Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in Caenorhabditis elegans. J Biol Chem 284:17549–17563CrossRefGoogle Scholar
  25. 25.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464CrossRefGoogle Scholar
  26. 26.
    Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906CrossRefGoogle Scholar
  27. 27.
    Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291CrossRefGoogle Scholar
  28. 28.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7:1061–1070CrossRefGoogle Scholar
  29. 29.
    Zhao L, Dong S-S, Zhao Y-L, Shao H-M, Krasteva N, Wu Q-L, Wang D-Y (2019) Dysregulation of let-7 by PEG modified graphene oxide in nematodes with deficit in epidermal barrier. Ecotoxicol Environ Saf 169:1–7CrossRefGoogle Scholar
  30. 30.
    Ding X-C, Rui Q, Zhao Y-L, Shao H-M, Yin Y-P, Wu Q-L, Wang D-Y (2018) Toxicity of graphene oxide in nematodes with deficit in epidermal barrier caused by RNA interference knockdown of unc-52. Environ Sci Technol Lett. CrossRefGoogle Scholar
  31. 31.
    Moribe H, Yochem J, Yamada H, Tabuse Y, Fujimoto T, Mekada E (2004) Tetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans. J Cell Sci 117:5209–5220CrossRefGoogle Scholar
  32. 32.
    Xu Z, Luo J, Li Y, Ma L (2015) The BLI-3/TSP-15/DOXA-1 dual oxidase complex is required for iodide toxicity in Caenorhabditis elegans. G3 5:195–203CrossRefGoogle Scholar
  33. 33.
    Tong A, Lynn G, Ngo V, Wong D, Moseley SL, Ewbank JJ, Goncharov A, Wu Y, Pujol N, Chisholm AD (2009) Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase. Proc Natl Acad Sci U S A 106:1457–1461CrossRefGoogle Scholar
  34. 34.
    Chuang M, Hsiao TI, Tong A, Xu S, Chisholm AD (2016) DAPK interacts with Patronin and the microtubule cytoskeleton in epidermal development and wound repair. eLife 5:e15833CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Li W, Li L, Li Y, Fu R, Zhu Y, Li J, Zhou Y, Xiong S, Zhang H (2015) Structural damage in the C. elegans epidermis causes release of STA-2 and induction of an innate immune response. Immunity 42:309–320CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations