Avoidance Behavior of Nematodes to Environmental Toxicants or Stresses

  • Dayong Wang


Nematodes will exhibit an avoidance behavior once facing upon environmental toxicants or stresses, which can be still defined as a protective strategy against the toxicity of environmental toxicants or stresses. We here mainly introduced and discussed the neurons and identified neuronal circuits involved in the regulation of avoidance behavior to environmental toxicants or stress and the underlying molecular basis. Meanwhile, we also introduced and discussed the potential intestinal function in regulating avoidance behavior to environmental toxicants or stresses.


Avoidance behavior Neurons Neuronal circuit Intestinal function Environmental exposure Caenorhabditis elegans 


  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Wang D-Y (2018) Molecular toxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  3. 3.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734CrossRefGoogle Scholar
  4. 4.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  5. 5.
    Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102CrossRefGoogle Scholar
  6. 6.
    Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology.
  7. 7.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126CrossRefGoogle Scholar
  8. 8.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450CrossRefGoogle Scholar
  9. 9.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441CrossRefGoogle Scholar
  10. 10.
    Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390CrossRefGoogle Scholar
  11. 11.
    Wang D-Y, Yu Y-L, Li Y-X, Wang Y, Wang D-Y (2014) Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS One 9:e115985CrossRefGoogle Scholar
  12. 12.
    Li Y-X, Wang Y, Hu Y-O, Zhong J-X, Wang D-Y (2011) Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans. Neurosci Bull 27:69–82CrossRefGoogle Scholar
  13. 13.
    Meisel JD, Kim DH (2014) Behavioral avoidance of pathogenic bacteria by Caenorhabditis elegans. Trends Immunol 36:465–470CrossRefGoogle Scholar
  14. 14.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26CrossRefGoogle Scholar
  15. 15.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464CrossRefGoogle Scholar
  16. 16.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7:1061–1070CrossRefGoogle Scholar
  17. 17.
    Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27CrossRefGoogle Scholar
  18. 18.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701CrossRefGoogle Scholar
  19. 19.
    Zhi L-T, Qu M, Ren M-X, Zhao L, Li Y-H, Wang D-Y (2017) Graphene oxide induces canonical Wnt/β-catenin signaling-dependent toxicity in Caenorhabditis elegans. Carbon 113:122–131CrossRefGoogle Scholar
  20. 20.
    Wang Q-Q, Zhao S-Q, Zhao Y-L, Rui Q, Wang D-Y (2014) Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv 4:60891–60901CrossRefGoogle Scholar
  21. 21.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanobiotechnol 16:45CrossRefGoogle Scholar
  22. 22.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560CrossRefGoogle Scholar
  23. 23.
    Sun L-M, Liao K, Hong C-C, Wang D-Y (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12:e0172228CrossRefGoogle Scholar
  24. 24.
    Sun L-M, Liao K, Wang D-Y (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12:e0184003CrossRefGoogle Scholar
  25. 25.
    Sun L-M, Liao K, Li Y-P, Zhao L, Liang S, Guo D, Hu J, Wang D-Y (2016) Synergy between PVP-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol 16:2325–2335CrossRefGoogle Scholar
  26. 26.
    Sun L-M, Liao K, Liang S, Yu P-H, Wang D-Y (2015) Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J Appl Microbiol 118:826–838CrossRefGoogle Scholar
  27. 27.
    Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239CrossRefGoogle Scholar
  28. 28.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152CrossRefGoogle Scholar
  29. 29.
    Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036CrossRefGoogle Scholar
  30. 30.
    Reddy KC, Andersen EC, Kruglyak L, Kim DH (2009) A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323:382–384CrossRefGoogle Scholar
  31. 31.
    Wang W, Xu Z, Wu Y, Qin L, Li Z, Wu Z (2015) Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans. Biochem Biophys Res Commun 461:463–468CrossRefGoogle Scholar
  32. 32.
    Hilliard MA, Bergamasco C, Arbucci S, Plasterk RHA, Bazzicalupo P (2004) Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. EBMO J 23:1101–1111Google Scholar
  33. 33.
    Roayaie K, Crump JG, Sagasti A, Bargmann CI (1998) The Ga protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20:55–67CrossRefGoogle Scholar
  34. 34.
    Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR (2005) In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 24:63–72CrossRefGoogle Scholar
  35. 35.
    Esposito G, Amoroso MR, Bergamasco C, Di Schiavi E, Bazzicalupo P (2010) The G protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the Gqα EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents. BMC Biol 8:138CrossRefGoogle Scholar
  36. 36.
    Aoki R, Yagami T, Sasakura H, Ogura K, Kajihara Y, Ibi M, Miyamae T, Nakamura F, Asakura T, Kanai Y, Misu Y, Iino Y, Ezcurra M, Schafer WR, Mori I, Goshima Y (2011) A seven-transmembrane receptor that mediates avoidance response to dihydrocaffeic acid, a water-soluble repellent in Caenorhabditis elegans. J Neurosci 31:16603–16610CrossRefGoogle Scholar
  37. 37.
    Ezcurra M, Tanizawa Y, Swoboda P, Schafer WR (2011) Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J 30:1110–1122CrossRefGoogle Scholar
  38. 38.
    Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485CrossRefGoogle Scholar
  39. 39.
    Hao Y, Yang W, Ren J, Hall Q, Zhang Y, Kaplan JM (2018) Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide. eLife 7:e36833CrossRefGoogle Scholar
  40. 40.
    Shao J, Zhang X, Cheng H, Yue X, Zou W, Kang L (2018) Serotonergic neuron ADF modulates avoidance behaviors by inhibiting sensory neurons in C. elegans. Pflugers Arch Eur J Physiol. CrossRefGoogle Scholar
  41. 41.
    Cao X, Kajino-Sakamoto R, Doss A, Aballay A (2017) Distinct roles of sensory neurons in mediating pathogen avoidance and neuropeptide-dependent immune regulation. Cell Rep 21:1442–1451CrossRefGoogle Scholar
  42. 42.
    Guo M, Wu T, Song Y, Ge M, Su C, Niu W, Li L, Xu Z, Ge C, Al-Mhanawi MTH, Wu S, Wu Z (2015) Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat Commun 6:5655CrossRefGoogle Scholar
  43. 43.
    Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank JJ (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci U S A 104:2295–2300CrossRefGoogle Scholar
  44. 44.
    Kotera I, Tran NA, Fu D, Kim JHJ, Rodgers JB, Ryu WS (2016) Pan-neuronal screening in Caenorhabditis elegans reveals asymmetric dynamics of AWC neurons is critical for thermal avoidance behavior. eLife 5:e19021CrossRefGoogle Scholar
  45. 45.
    Hallem EA, ClSpencer WC, McWhirter RD, Zeller G, Henz SR, Rätsch G, Miller DM III, Horvitz HR, Sternberga PW, Ringstad N (2011) Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc Natl Acad Sci U S A 108:254–259CrossRefGoogle Scholar
  46. 46.
    Brandt JP, Ringstad N (2015) Toll-like receptor signaling promotes development and function of sensory neurons required for a C. elegans pathogen-avoidance behavior. Curr Biol 25:2228–2237CrossRefGoogle Scholar
  47. 47.
    Chang HC, Paek J, Kim DH (2011) Natural polymorphisms in C. elegans HECW-1 E3 ligase affect pathogen avoidance behaviour. Nature 480:525–529CrossRefGoogle Scholar
  48. 48.
    White JG, Southgate WE, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Tran R Soc B Biol Sci 314:1–340CrossRefGoogle Scholar
  49. 49.
    Hori S, Oda S, Suehiro Y, Iino Y, Mitani S (2018) OFF-responses of interneurons optimize avoidance behaviors depending on stimulus strength via electrical synapses. PLoS Genet 14:e1007477CrossRefGoogle Scholar
  50. 50.
    Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37CrossRefGoogle Scholar
  51. 51.
    Meisel JD, Panda O, Mahanti P, Schroeder FC, Kim DH (2014) Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell 159:267–280CrossRefGoogle Scholar
  52. 52.
    Luo J, Xu Z, Tan Z, Zhang Z, Ma L (2015) Neuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate. Genetics 199:523–531CrossRefGoogle Scholar
  53. 53.
    Lee K, Mylonakis E (2017) An intestine-derived neuropeptide controls avoidance behavior in Caenorhabditis elegans. Cell Rep 20:2501–2512CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations