Skip to main content

Gold Nanostructures for Photothermal Therapy

  • Chapter
  • First Online:
Nanotechnology in Modern Animal Biotechnology

Abstract

Gold nanostructures – due to their ease of synthesis and functionalization, unique tunable optical properties and stability – are widely being explored for their applicability in sensing, diagnostics, drug delivery and cancer therapy. Engineering different gold nanostructures with varying shape and size enable us to tune the localized surface plasmon resonance (LSPR) peak from visible to near infra-red (NIR) region of the electromagnetic spectrum, which can be exploited for biomedical applications. For example, gold nanorods show two peaks in their extinction spectra, corresponding to the transverse and longitudinal mode of surface electron oscillation on the influence of light. Similarly, other gold nanostructures with different morphologies like nanoshells, nanorattles, nanostars, nanopopcorns, nanoaggregates, etc. too have extinction band in the NIR region, which has a better tissue penetration depth. This strong optical absorbance of the gold nanostructures, especially in the NIR region and subsequent dissipation of energy in a nonradiative process can suitably be exploited for plasmonic photothermal therapy (PPTT). In this regard, NIR light stimulated heat can be generated from the targeted gold nanostructures and this can potentially be used to kill cancer cells. The present chapter discusses about the design and applicability of gold based nanostructures of different morphologies for efficient photothermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadeer, N. S., & Murphy, C. J. (2016). Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C, 120(9), 4691–4716.

    Article  CAS  Google Scholar 

  • Ai, X., Mu, J., & Xing, B. (2016). Recent advances of light-mediated theranostics. Theranostics, 6(13), 2439–2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au, L., Zheng, D., Zhou, F., Li, Z.-Y., Li, X., & Xia, Y. (2008). A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano, 2(8), 1645–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa, S., Agrawal, A., Rodríguez-Lorenzo, L., Pastoriza-Santos, I., Alvarez-Puebla, R. A., Kornowski, A., Weller, H., & Liz-Marzán, L. M. (2010). Tuning size and sensing properties in colloidal gold nanostars. Langmuir, 26(18), 14943–14950.

    Article  CAS  PubMed  Google Scholar 

  • Bear, A. S., Kennedy, L. C., Young, J. K., Perna, S. K., Mattos Almeida, J. P., Lin, A. Y., Eckels, P. C., Drezek, R. A., & Foster, A. E. (2013). Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer. PLoS One, 8(7), e69073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beqa, L., Fan, Z., Singh, A. K., Senapati, D., & Ray, P. C. (2011). Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and potothermal therapy of human breast cancer cells. ACS Applied Materials & Interfaces, 3(9), 3316–3324.

    Article  CAS  Google Scholar 

  • Bhana, S., Lin, G., Wang, L., Starring, H., Mishra, S. R., Liu, G., & Huang, X. (2015). Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. ACS Applied Materials & Interfaces, 7(21), 11637–11647.

    Article  CAS  Google Scholar 

  • Black, K. C., Yi, J., Rivera, J. G., Zelasko-Leon, D. C., & Messersmith, P. B. (2013). Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine, 8(1), 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Brunetaud, J. M., Mordon, S., Maunoury, V., & Beacco, C. (1995). Non-PDT uses of lasers in oncology. Lasers in Medical Science, 10(1), 3–8.

    Article  Google Scholar 

  • Calderwood, S. K., & Ciocca, D. R. (2008). Heat shock proteins: Stress proteins with Janus- like properties in cancer. International Journal of Hyperthermia, 24, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., Warsen, A., Li, Z.-Y., Zhang, H., Xia, Y., & Li, X. (2007). Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 7(5), 1318–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Shao, L., Ming, T., Sun, Z., Zhao, C., Yang, B., & Wang, J. (2010a). Understanding the photothermal conversion efficiency of gold nanocrystals. Small, 6(20), 2272–2280.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Glaus, C., Laforest, R., Zhang, Q., Yang, M., Gidding, M., Welch, M. J., & Xia, Y. (2010b). Gold nanocages as photothermal transducers for cancer treatment. Small, 6(7), 811–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Zhang, X., Dai, S., Ma, Y., Cui, S., Achilefus, S., & Gu, Y. (2013). Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics, 3(9), 633–649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Z., Yu, D., Huang, Y., Zhang, Z., Liu, T., & Zhan, J. (2014). Tunable SERS-tags-hidden gold nanorattles for theranosis of cancer cells with single laser beam. Scientific Reports, 4, 6709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, W. I., Kim, J.-Y., Kang, C., Byeon, C. C., Kim, Y. H., & Tae, G. (2011). Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano, 5(3), 1995–2003.

    Article  CAS  PubMed  Google Scholar 

  • Chu, Z., Zhang, S., Zhang, B., Zhang, C., Fang, C.-Y., Rehor, I., Cigler, P., Chang, H.-C., Lin, G., Liu, R., & Li, Q. (2014). Unambiguous observation of shape effects on cellular fate of nanoparticles. Scientific Reports, 4, 4495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10(2), 86–103.

    Article  CAS  Google Scholar 

  • Dickerson, E., Dreaden, E., Huang, X., ElSayed, I., Chu, H., Pushpanketh, S., Mcdonald, J., & ElSayed, M. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 269(1), 57–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed, I. H., Huang, X., & El-Sayed, M. A. (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters, 239(1), 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Faraday, M. (1857). The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 147(0), 145–181.

    Google Scholar 

  • Fink, S. L., & Cookson, B. T. (2005). Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infection and Immunity, 73(4), 1907–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, L., Fei, J., Zhao, J., Li, H., Cui, Y., & Li, J. (2012). Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano, 6(9), 8030–8040.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., Gu, J., Li, L., Zhao, W., & Li, Y. (2016). Synthesis of gold nanoshells through improved seed-mediated growth approach: Brust-like, in situ seed formation. Langmuir, 32(9), 2251–2258.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107(11), 4797–4862.

    Article  CAS  PubMed  Google Scholar 

  • Henglein, A. (1993). Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. The Journal of Physical Chemistry, 97(21), 5457–5471.

    Article  CAS  Google Scholar 

  • Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., & West, J. L. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences, 100(23), 13549–13554.

    Article  CAS  Google Scholar 

  • Hu, M., Chen, J., Li, Z.-Y., Au, L., Hartland, G. V., Li, X., Marquez, M., & Xia, Y. (2006). Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 35(11), 1084–1094.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., & El-Sayed, M. A. (2011). Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine, 47(1), 1–9.

    Article  CAS  Google Scholar 

  • Huang, X., El-Sayed, I. H., Qian, W., & El-Sayed, M. A. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 128(6), 2115–2120.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23(3), 217–228.

    Article  PubMed  Google Scholar 

  • Huang, X., Kang, B., Qian, W., Mackey, M. A., Chen, P. C., Oyelere, A. K., El-Sayed, I. H., & El-Sayed, M. A. (2010). Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: Continuous wave or pulsed lasers. Journal of Biomedical Optics, 15(5), 058002, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, S., Nam, J., Jung, S., Song, J., Doh, H., & Kim, S. (2014a). Gold nanoparticle-mediated photothermal therapy: Current status and future perspective. Nanomedicine, 9(13), 2003–2022.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, S., Nam, J., Song, J., Jung, S., Hur, J., Im, K., Park, N., & Kim, S. (2014b). A sub 6 nanometer plasmonic gold nanoparticle for pH-responsive near-infrared photothermal cancer therapy. New Journal of Chemistry, 38(3), 918–922.

    Article  CAS  Google Scholar 

  • Jaiswal, A., Tian, L., Tadepalli, S., Liu, K., Fei, M., Farrell, M. E., Pellegrino, P. M., & Singamaneni, S. (2014). Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced Raman scattering. Small, 10(21), 4287–4292.

    CAS  PubMed  Google Scholar 

  • Jung, Y. J., Govindaiah, P., Park, T., Lee, S. J., Ryu, D. Y., Kim, J. H., & Cheong, I. W. (2010). Luminescent gold–poly(thiophene) nanoaggregates prepared by one-step oxidative polymerization. Journal of Materials Chemistry, 20, 9770–9774.

    Article  CAS  Google Scholar 

  • Jang, B., Park, J. Y., Tung, C. H., Kim, I. H., & Choi, Y. (2011). Gold nanorod− photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 5(2), 1086–1094.

    Article  CAS  PubMed  Google Scholar 

  • Jung, S., Nam, J., Hwang, S., Park, J., Hur, J., Im, K., Park, N., & Kim, S. (2013). Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy. Analytical Chemistry, 85(16), 7674–7681.

    Article  CAS  PubMed  Google Scholar 

  • Ke, H., Wang, J., Tong, S., Jin, Y., Wang, S., Qu, E., Bao, G., & Dai, Z. (2014). Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: A nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics, 4(1), 12–23.

    Article  CAS  Google Scholar 

  • Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668–677.

    Article  CAS  Google Scholar 

  • Khan, S. A., Kanchanapally, R., Fan, Z., Beqa, L., Singh, A. K., Senapati, D., & Ray, P. C. (2012). A gold nanocage–CNT hybrid for targeted imaging and photothermal destruction of cancer cells. Chemical Communications, 48(53), 6711–67113.

    Article  CAS  PubMed  Google Scholar 

  • Khandelia, R., Jaiswal, A., Ghosh, S. S., & Chattopadhyay, A. (2014). Polymer coated gold nanoparticle–protein agglomerates as nanocarriers for hydrophobic drug delivery. Journal of Materials Chemistry B, 2(38), 6472–6477.

    Article  CAS  PubMed  Google Scholar 

  • Khlebtsov, N. G., & Dykman, L. A. (2010). Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(1), 1–35.

    Article  CAS  Google Scholar 

  • Khlebtsov, B., Panfilova, E., Khanadeev, V., Bibikova, O., Terentyuk, G., Ivanov, A., Rumyantseva, V., Shilov, I., Ryabova, A., Loshchenov, V., & Khlebtsov, N. G. (2011). Nanocomposites containing silica-coated gold–silver nanocages and Yb–2, 4-dimethoxyhematoporphyrin: Multifunctional capability of IR-Luminescence detection, photosensitization, and photothermolysis. ACS Nano, 5(9), 7077–7089.

    Article  CAS  PubMed  Google Scholar 

  • Khoury, C. G., & Vo-Dinh, T. (2008). Gold nanostars for surface-enhanced Raman scattering: Synthesis, characterization and optimization. The Journal of Physical Chemistry C, 112(48), 18849–18859.

    Article  CAS  Google Scholar 

  • Kono, H., & Rock, K. L. (2008). How dying cells alert the immune system to danger. Nature Reviews Immunology, 8(4), 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K.-S., & El-Sayed, M. A. (2005). Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. The Journal of Physical Chemistry B, 109(43), 20331–20338.

    Article  CAS  PubMed  Google Scholar 

  • Li, J.-L., & Gu, M. (2010). Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials, 31(36), 9492–9498.

    Article  CAS  PubMed  Google Scholar 

  • Lin, A. Y., Young, J. K., Nixon, A. V., & Drezek, R. A. (2014). Encapsulated Fe3O4/Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy. Small, 10, 3246–3251.

    Article  CAS  PubMed  Google Scholar 

  • Link, S., & El-Sayed, M. A. (1999). Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212–4217.

    Article  CAS  Google Scholar 

  • Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409–453.

    Article  CAS  Google Scholar 

  • Link, S., & El-Sayed, M. A. (2005). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B, 109(20), 10531–10532.

    Article  CAS  Google Scholar 

  • Link, S., Mohamed, M. B., & El-Sayed, M. A. (1999). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B, 103(16), 3073–3077.

    Article  CAS  Google Scholar 

  • Liu, M., Yang, P.-H., & Cai, J.-Y. (2009a). Optical properties and biomedical application of gold nanorods*. Progress in Biochemistry and Biophysics, 36(11), 1402–1407.

    Article  CAS  Google Scholar 

  • Liu, S.-Y., Liang, Z.-S., Gao, F., Luo, S.-F., & Lu, G.-Q. (2009b). In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. Journal of Materials Science: Materials in Medicine, 21(2), 665–674.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Xu, M., Chen, Q., Guan, G., Hu, W., Zhao, X., Qiao, M., Hu, H., Liang, Y., Zhu, H., & Chen, D. (2015). Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. International Journal of Nanomedicine, 10, 4747–4761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liz-Marzán, L. M. (2004). Nanometals. Materials Today, 7(2), 26–31.

    Article  Google Scholar 

  • Lowery, A. R., Gobin, A. M., Day, E. S., Halas, N. J., & West, J. L. (2006). Immunonanoshells for targeted photothermal ablation of tumor cells. International Journal of Nanomedicine, 1(2), 149–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, W., Singh, A. K., Khan, S. A., Senapati, D., Yu, H., & Ray, P. C. (2010). Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 132(51), 18103–18114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Y., Liang, X., Tong, S., Bao, G., Ren, Q., & Dai, Z. (2012). Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Advanced Functional Materials, 23(7), 815–822.

    Article  CAS  Google Scholar 

  • Mahmoud, M. A. (2014). Optical properties of gold nanorattles: Evidences for free movement of the inside solid nanosphere. The Journal of Physical Chemistry C, 118(19), 10321–10328.

    Article  CAS  Google Scholar 

  • Melamed, J. R., Edelstein, R. S., & Day, E. S. (2015). Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano, 9(1), 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Melancon, M. P., Lu, W., Zhong, M., Zhou, M., Liang, G., Elliott, A. M., Hazle, J. D., Myers, J. N., Li, C., & Jason Stafford, R. (2011). Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 32(30), 7600–7608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messina, E., Cavallaro, E., Cacciola, A., Iatì, M. A., Gucciardi, P. G., Borghese, F., Denti, P., Saija, R., Compagnini, G., Meneghetti, M., Amendola, V., & Maragò, O. M. (2011). Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. ACS Nano, 5(2), 905–913.

    Article  CAS  PubMed  Google Scholar 

  • Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788–800.

    Article  CAS  Google Scholar 

  • Nam, J., Won, N., Jin, H., Chung, H., & Kim, S. (2009). PH-induced aggregation of gold nanoparticles for photothermal cancer therapy. Journal of the American Chemical Society, 131(38), 13639–13645.

    Article  CAS  PubMed  Google Scholar 

  • Nam, J., La, W.-G., Hwang, S., Ha, Y. S., Park, N., Won, N., Jung, S., Bhang, S. H., Ma, Y.-J., Cho, Y.-M., Jin, M., Han, J., Shin, J.-Y., Wang, E. K., Kim, S. G., Cho, S.-H., Yoo, J., & Kim, B.-S. (2013a). PH-responsive assembly of gold nanoparticles and “Spatiotemporally Concerted” drug release for synergistic cancer therapy. ACS Nano, 7(4), 3388–3402.

    Article  CAS  PubMed  Google Scholar 

  • Nam, J., Ha, Y. S., Hwang, S., Lee, W., Song, J., Yoo, J., & Kim, S. (2013b). PH-responsive gold nanoparticles-in-liposome hybrid nanostructures for enhanced systemic tumor delivery. Nanoscale, 5(21), 10175–10178.

    Article  CAS  PubMed  Google Scholar 

  • Neeves, A. E., & Birnboim, M. H. (1989). Composite structures for the enhancement of nonlinear-optical susceptibility. Journal of the Optical Society of America B, 6(4), 787–796.

    Article  CAS  Google Scholar 

  • Nie, S., Xing, Y., Kim, G. J., & Simons, J. W. (2007). Nanotechnology applications in cancer. Annual Review of Biomedical Engineering, 9(1), 257–288.

    Article  CAS  PubMed  Google Scholar 

  • Okuno, T., Kato, S., Hatakeyama, Y., Okajima, J., Maruyama, S., Sakamoto, M., Mori, S., & Kodama, T. (2013). Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light. Journal of Controlled Release, 172(3), 879–884.

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg, S. J., Averitt, R. D., Westcott, S. L., & Halas, N. J. (1998). Nanoengineering of optical resonances. Chemical Physics Letters, 288(2–4), 243–247.

    Article  CAS  Google Scholar 

  • Papavassiliou, G. C. (1979). Optical properties of small inorganic and organic metal particles. Progress in Solid State Chemistry, 12(3–4), 185–271.

    Article  CAS  Google Scholar 

  • Pérez-Hernández, M., del Pino, P., Mitchell, S. G., Moros, M., Stepien, G., Pelaz, B., Parak, W. J., Gálvez, E. M., Pardo, J., & de la Fuente, J. M. (2015). Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano, 9(1), 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Pissuwan, D., Valenzuela, S. M., Killingsworth, M. C., Xu, X., & Cortie, M. B. (2007). Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. Journal of Nanoparticle Research, 9(6), 1109–1124.

    Article  CAS  Google Scholar 

  • Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., & Lin, C. P. (2003). Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophysical Journal, 84(6), 4023–4032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos, M., & Sanchez. (2012). Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods. International Journal of Nanomedicine, 7, 1511–1523.

    Article  CAS  Google Scholar 

  • Rodríguez-Oliveros, R., & Sánchez-Gil, J. A. (2011). Gold nanostars as thermoplasmonic nanoparticles for optical heating. Optics Express, 20(1), 621–626.

    Article  CAS  Google Scholar 

  • Schwartzberg, A. M., Olson, T. Y., Talley, C. E., & Zhang, J. Z. (2006). Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. The Journal of Physical Chemistry B, 110(40), 19935–19944.

    Article  CAS  PubMed  Google Scholar 

  • Sheikholeslami, F., Fekrazad, R., Rasaee, & Ardestani, S. (2011). Treatment of oral squamous cell carcinoma using anti-hER2 immunonanoshells. International Journal of Nanomedicine, 6, 2749–2755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, P., Qu, K., Wang, J., Li, M., Ren, J., & Qu, X. (2012). PH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chemical Communications, 48(61), 7640–7642.

    Article  CAS  PubMed  Google Scholar 

  • Skrabalak, S. E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C. M., & Xia, Y. (2008). Gold nanocages: Synthesis, properties, and applications. Accounts of Chemical Research, 41(12), 1587–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern, J. M., Stanfield, J., Kabbani, W., Hsieh, J.-T., & Cadeddu, J. A. (2008). Selective prostate cancer thermal ablation with laser activated gold nanoshells. The Journal of Urology, 179(2), 748–753.

    Article  PubMed  Google Scholar 

  • Sultan, R. A. (1990). Tumour ablation by laser in general surgery. Lasers in Medical Science, 5(2), 185–193.

    Article  Google Scholar 

  • Sun, X., Huang, X., Yan, X., Wang, Y., Guo, J., Jacobson, O., Liu, D., Szajek, L. P., Zhu, W., Niu, G., Kiesewetter, D. O., Sun, S., & Chen, X. (2014a). Chelator-Free64Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy. ACS Nano, 8(8), 8438–8446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, T., Wang, Y., Xu, J., Zhao, X., Vangveravong, S., Mach, R. H., & Xia, Y. (2014b). Using SV119-gold nanocage conjugates to eradicate cancer stem cells through a combination of photothermal and chemo therapies. Advanced Healthcare Materials, 3(8), 1283–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.

    Article  Google Scholar 

  • Van de Broek, B., Devoogdt, N., D’Hollander, A., Gijs, H.-L., Jans, K., Lagae, L., Muyldermans, S., Maes, G., & Borghs, G. (2011). Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano, 5(6), 4319–4328.

    Article  PubMed  CAS  Google Scholar 

  • Vigderman, L., & Zubarev, E. R. (2013). High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials, 25(8), 1450–1457.

    Article  CAS  Google Scholar 

  • Von Maltzahn, G., Park, J., Agrawal, A., Bandaru, N. K., Das, S. K., Sailor, M. J., & Bhatia, S. N. (2009). Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Research, 69(9), 3892–3900.

    Article  PubMed Central  CAS  Google Scholar 

  • Wang, J., Zhu, G., You, M., Song, E., Shukoor, M. I., Zhang, K., Altman, M. B., Chen, Y., Zhu, Z., Huang, C. Z., & Tan, W. (2012). Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano, 6(6), 5070–5077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Sefah, K., Altman, M. B., Chen, T., You, M., Zhao, Z., Huang, C. Z., & Tan, W. (2013). Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chemistry – An Asian Journal, 8(10), 2417–2422.

    Article  CAS  Google Scholar 

  • Wang, D., Xu, Z., Yu, H., Chen, X., Feng, B., Cui, Z., Lin, B., Yin, Q., Zhang, Z., Chen, C., Wang, J., Zhang, W., & Li, Y. (2014). Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials, 35(29), 8374–8384.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Yu, C., & Chu, M. (2011). A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. International Journal of Nanomedicine, 6, 807–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., & Schlag, P. (2002). Hyperthermia in combined treatment of cancer. The Lancet Oncology, 3(8), 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, P., Li, Q., Joo, Y., Nam, J., Hwang, S., Song, J., Kim, S., Joo, C., & Kim, K. H. (2013). Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography. Optics Letters, 38(21), 4429–4432.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Yang, D., Mei, L., Li, Q., Zhu, H., & Wang, T. (2013). Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Applied Materials & Interfaces, 5(24), 12911–12920.

    Article  CAS  Google Scholar 

  • Yang, X., Liu, X., Liu, Z., Pu, F., Ren, J., & Qu, X. (2012). Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Advanced Materials, 24(21), 2890–2895.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Shen, D., Zhou, L., Li, W., Li, X., Yao, C., Wang, R., El-Toni, A. M., Zhang, F., & Zhao, D. (2013). Spatially confined fabrication of Core–Shell gold Nanocages@Mesoporous silica for near-infrared controlled photothermal drug release. Chemistry of Materials, 25(15), 3030–3037.

    Article  CAS  Google Scholar 

  • Yavuz, M. S., Cheng, Y., Chen, J., Cobley, C. M., Zhang, Q., Rycenga, M., Xie, J., Kim, C., Song, K. H., Schwartz, A. G., Wang, L. V., & Xia, Y. (2009). Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 8(12), 935–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeager, D., Chen, Y.-S., Litovsky, S., & Emelianov, S. (2014). Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: A feasibility study. Theranostics, 4(1), 36–46.

    Article  CAS  Google Scholar 

  • You, J., Zhang, R., Xiong, C., Zhong, M., Melancon, M., Gupta, S., Nick, A. M., Sood, A. K., & Li, C. (2012). Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Research, 72(18), 4777–4786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, H., Khoury, C. G., Wilson, C. M., Grant, G. A., Bennett, A. J., & Vo-Dinh, T. (2012a). In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine: Nanotechnology, Biology and Medicine, 8(8), 1355–1363.

    Article  CAS  Google Scholar 

  • Yuan, H., Fales, A. M., & Vo-Dinh, T. (2012b). TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. Journal of the American Chemical Society, 134(28), 11358–11361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zharov, V. P., Kim, J. W., Curiel, D. T., & Everts, M. (2005). Self-assembling nanoclusters in living systems: Application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 1(4), 326–345.

    Article  CAS  Google Scholar 

  • Zhang, Z., Wang, J., Nie, X., Wen, T., Ji, Y., Wu, X., Zhao, Y., & Chen, C. (2014). Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. Journal of the American Chemical Society, 136(20), 7317–7326.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AJ gratefully acknowledge the financial support from Indian Institute of Technology Mandi, Department of Science and Technology (DST) under project number: SERB/F/5627/2015-16 and Department of Biotechnology (DBT), Government of India, under project number: BT/PR14749/NNT/28/954/2015. SR would like to acknowledge DST INSPIRE Fellowship programme [IF160513] for providing doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aditi Banerjee or Amit Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Roy, S., Sanpui, P., Banerjee, A., Jaiswal, A. (2019). Gold Nanostructures for Photothermal Therapy. In: Singh, S., Maurya, P. (eds) Nanotechnology in Modern Animal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6004-6_2

Download citation

Publish with us

Policies and ethics