Advertisement

Optimal Thresholding in Direct Binary Search Visual Cryptography for Enhanced Bank Locker System

  • Sandhya Anne ThomasEmail author
  • Saylee Gharge
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 906)

Abstract

Visual cryptography (VC) is one of the strongest cryptographic method present. The main advantage of this system is that the decryption doesnot need any specific requirements for decoding other than human eyes. Using halftoning techniques binary images are obtained for grayscale and color images, this technique is applied in Halftone VC. In this paper, direct binary search (DBS) is implemented and initial images are modified for better quality of recovered images. The concept is proposed for bank locker systems. Comparison has been made using parameters like PSNR, Correlation, UQI and SSIM.

Keywords

Visual cryptography Halftone visual cryptography Direct binary search Color images Bank lockers Security 

References

  1. 1.
    Naor, M., & Shamir, A. (1994). Visual cryptography. In Proceeding EUROCRYPT (pp. 1–12).Google Scholar
  2. 2.
    Thomas, S. A., & Gharge, S. (2017). Review on various visual cryptography schemes. In 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) (pp. 1164–1167). Mysore.Google Scholar
  3. 3.
    Blundo, C., DArco, P., De Santis, A., & Stinson, D. R. (2003). Contrast optimal threshold visual cryptography schemes. SIAM Journal on Discrete Mathematics, 16, 224–261.Google Scholar
  4. 4.
    Ateniese, G., Blundo, C., Santis, A. D., & Stinson, D. R. (1996). Visual cryptography for general access structures. Information and Computation, 129, 86–106.Google Scholar
  5. 5.
    Blundo, C., Santis, A. D., & Naor, M. (2000). Visual cryptography for grey level images. Information Processing Letters, 75, 255–259.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hou, Y. C. (2003). Visual cryptography for color images. Pattern Recognition, 36, 1619–1629.CrossRefGoogle Scholar
  7. 7.
    Ateniese, G., Blundo, C., Santis, A., & Stinson, D. R. (2001). Extended capabilities for visual cryptography. Theoretical Computer Science, 250, 143–161.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhou, Z., Arce, G. R., & Crescenzo, G. D. (2006). Halftone visual cryptography. IEEE Transactions on Image Processing, 18, 2441–2453.CrossRefGoogle Scholar
  9. 9.
    Thomas, S. A., & Gharge, S. (2018). Halftone visual cryptography for grayscale images using error diffusion and direct binary search, in 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1091–1096). Tirunelveli, India.Google Scholar
  10. 10.
    Kang, I., Arce, G. R., & Lee, H.-K. (2011). Color extended visual cryptography using error diffusion. IEEE Transactions on Image Processing, 20.Google Scholar
  11. 11.
    Wang, Z. M., Arce, G. R., & Di Crescenzo, G. (2006). Halftone visual cryptography via direct binary search. EUSIPCO.Google Scholar
  12. 12.
    Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.CrossRefGoogle Scholar
  13. 13.
    Thomas, S. A., & Gharge, S. (2018). Enhanced security for military grid reference system using visual cryptography, in 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1–7). Bangalore.Google Scholar
  14. 14.
    Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9.Google Scholar
  15. 15.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringVESITMumbaiIndia

Personalised recommendations