A Review on Feature Selection Algorithms

  • Savina ColacoEmail author
  • Sujit Kumar
  • Amrita Tamang
  • Vinai George Biju
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 906)


A large number of data are increasing in multiple fields such as social media, bioinformatics and health care. These data contain redundant, irrelevant or noisy data which causes high dimensionality. Feature selection is generally used in data mining to define the tools and techniques available for reducing inputs to a controllable size for processing and analysis. Feature selection is also used for dimension reduction, machine learning and other data mining applications. A survey of different feature selection methods are presented in this paper for obtaining relevant features. It also introduces feature selection algorithm called genetic algorithm for detection and diagnosis of biological problems. Genetic algorithm is mainly focused in the field of medicines which can be beneficial for physicians to solve complex problems. Finally, this paper concludes with various challenges and applications in feature selection.


Feature selection Classification Wrapper method Genetic algorithm 


  1. 1.
    Gheyas., & Smith, L. S. (2010). Feature subset selection in large dimensionality domains. PatternRecognition, 43(1), 5–13.Google Scholar
  2. 2.
    Xue, B., Zhang, M. J., & Browne, W. N. (2013). Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Transactions Cybernetics, 43(6), 1656–1671.CrossRefGoogle Scholar
  3. 3.
    Yang, K., Cai, Z., Li, J., & Lin, G. (2006). A stable gene selection in microarray data analysis. BMC Bioinformatics, 7(1), 228.CrossRefGoogle Scholar
  4. 4.
    Liu, H., Motoda, H., Setiono, R., & Zhao, Z. (2010). Feature selection: An ever evolving frontier in data mining. Journal of Machine. Learning. Research Proceeding Track, 10, 4–13.Google Scholar
  5. 5.
    PEHRO, D., & Stork, D. G. (2001). Pattern classification. Wiley-Interscience Publication.Google Scholar
  6. 6.
    Bo, T., & Jonassen, I. (2002). New feature subset selection procedures for classification of expression profiles. Genome Biology, 3(4), 1–0017.CrossRefGoogle Scholar
  7. 7.
    Xu, R., Damelin, S., Nadler, B., & Wunsch, D. C., II. (2010). Clustering of high-dimensional gene expression data with feature filtering methods and diffusion maps. Artificial Intelligence in Medicine, 48(2/3), 91–98.CrossRefGoogle Scholar
  8. 8.
    Bandyopadhyay, S., Mukhopadhyay, A., & Maulik, U. (2007). An improved algorithm for clustering gene expression data. Bioinformatics, 23(21), 2859–2865.CrossRefGoogle Scholar
  9. 9.
    Maulik, U. (2011). Analysis of gene microarray data in a soft computing framework. Applied Soft Computing, 11(6), 4152–4160.CrossRefGoogle Scholar
  10. 10.
    Ahmed, S., Zhang, M., & Peng, L. (2013). Enhanced feature selection for biomarker discovery in LC-MS data using GP. In Proceedings of the 2013 IEEE Congress Evolutionary Computation (CEC) (pp. 584–591). Cancún, Mexico.Google Scholar
  11. 11.
    Derrac, J., Garcia, S., & Herrera, F (2009). A first study on the use of coevolutionary algorithms for instance and feature selection. In Hybrid artificial intelligence systems (LNCS 5572) (pp. 557–564). Berlin, Germany: Springer.Google Scholar
  12. 12.
    Li, Y., Zhang, S., & Zeng, X. (2009). Research of multi-population agent genetic algorithm for feature selection. Expert Systems with Applications, 36(9), 11570–11581.CrossRefGoogle Scholar
  13. 13.
    Mao, Q., & Tsang, I. W.-H. (2013). A feature selection method for multivariate performance measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2051–2063.CrossRefGoogle Scholar
  14. 14.
    Venkatraman, V., Dalby, A. R., & Yang, Z. R. (2004). Evaluation of mutual information and genetic programming for feature selection in QSAR. Journal of Chemical Information and Computer Sciences, 44(5), 1686–1692.CrossRefGoogle Scholar
  15. 15.
    Min, F., Hu, Q., & Zhu, W. (2014). Feature selection with test cost constraint. International Journal of Appropriate Reasoning, 55(1), 167–179.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jeong, Y.-S., Shin, K. S., & Jeong, M. K. (2014). An evolutionary algorithm with the partial sequential forward floating search mutation for largescale feature selection problems. Journal of the Operational Research Society, 66(4), 529–538.CrossRefGoogle Scholar
  17. 17.
    Wang, S., Pedrycz, W., Zhu, Q., & Zhu, W. (2015). Subspace learning for unsupervised feature selection via matrix factorization. Pattern Recognition, 48(1), 10–19.CrossRefGoogle Scholar
  18. 18.
    Lane, M. C., Xue, B., Liu, I., & Zhang, M. (2013). Particle swarm optimisation and statistical clustering for feature selection. In Advances in artificial intelligence (LNCS 8272). (pp. 214–220). Cham, Switzerland: Springer.Google Scholar
  19. 19.
    Lane, M. C., Xue, B., Liu. I., & Zhang, M. (2014). Gaussian based particle swarm optimisation and statistical clustering for feature selection. In Evolutionary computation in combinatorial optimisation (LNCS 8600). (pp. 133–144). Berlin, Germany: Springer.Google Scholar
  20. 20.
    Ke, L., Feng, Z., Xu, Z., Shang, K., & Wang, Y. (2010). A multiobjective ACO algorithm for rough feature selection. In Proceedings of the. second Pacific Asia Conference Circuits Communications and System (PACCS) (vol. 1, pp. 207–210). Beijing, China.Google Scholar
  21. 21.
    Ghaheri, A., Shoar, S., Naderan, M., & Hoseini, S. S. (2015). November). The applications of genetic algorithms in medicine. Oman Medical Journal, 30(6), 406–416.Google Scholar
  22. 22.
    Hauskrecht, M., Pelikan, R., Valko, M., Lyons-Weiler, J. (2007). Feature selection and dimensionality reduction in genomics and proteomics. In Fundamentals of data mining in genomics and proteomics. (pp. 149–172).Google Scholar
  23. 23.
    Rui, Y., Huang, T. S., Chang, S. (1999). Image retrieval: Current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation, 10(4), 39–62.CrossRefGoogle Scholar
  24. 24.
    Liu, H., & Motoda, H. (2007). Computational methods of feature selection. Chapman and Hall/CRC Press.Google Scholar
  25. 25.
    Uysal, A. K., & Gunal, S. (2012). A novel probabilistic feature selection method for text classification. Knowledge-Based Systems, 36, 226–235.Google Scholar
  26. 26.
    Doshi, M., & Chaturvedi, D. S. K. (2014). Correlation based feature selection (cfs) technique to predict student perfromance. International Journal of Computer Networks & Communications (IJCNC), 6(3).Google Scholar
  27. 27.
    Roffo, G., Melzi, S., & Cristani,M. (2015). Infinite feature selection. In EEE International Conference on Computer Vision, (pp. 4202–4210).Google Scholar
  28. 28.
    Yang, Y., Shen, H. T., Ma, Z., Huang, Z., & Zhou, X. l2,1-Norm regularized discriminative feature selection for unsupervised learning. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.Google Scholar
  29. 29.
    Xu, J., & Man, H. (2011). Dictionary learning based on laplacian score ins coding. In P. Perner (Ed.), MLDM 2011 (Vol. 6871, pp. 253–264). LNCS (LNAI) Heidelberg: Springer.Google Scholar
  30. 30.
    Cai, D., Zhang, C., & He, X. (2010). Unsupervised feature selection for multi-cluster data. KDD.Google Scholar
  31. 31.
    Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1), 273–324.Google Scholar
  32. 32.
    Bradley, P. S., & Mangasarian, O. L. (2010). Feature slection via concave minimization and support vector machines.Google Scholar
  33. 33.
    Kabir, M. M., Islam, M. M., & Murase, K. (2011). A new local search based hybrid genetic algorithm for feature selection. Neurocomputing, 74, 2194–2928.Google Scholar
  34. 34.
    Sam, M. L., Camara, F., Ndiaye, S., Slimani, Y., & Esseghir, M. A. (2012 June). A Novel RFE-SVM-based Feature Selection Approach for Classification. International Journal of Advanced Science and Technology, 43.Google Scholar
  35. 35.
    Guan, S., Liu, J., & Qi, Y. (2004). An incremental approach to contribution-based feature selection. Journal of Intelligence Systems, 13(1).Google Scholar
  36. 36.
    Kabir, M. M., Islam, M. M., & Murase, K. (2008). A new wrapper feature selection approach using neural network. In Proceedings of the Joint Fourth International Conference on Soft Computing and Intelligent Systems and Ninth International Symposium on Advanced Intelligent Systems (SCIS&ISIS2008) (pp. 1953–1958). Japan.Google Scholar
  37. 37.
    Kabir, M. M., Islam, M. M., & Murase, K. (2010). A new wrapper feature selection approach using neural network. Neurocomputing, 73, 3273–3283.Google Scholar
  38. 38.
    Gasca, E., Sanchez, J., & Alonso, R. (2006). Eliminating redundancy and irrelevance using a new MLP-based feature selection method.Pattern Recognition, 39, 313–315.Google Scholar
  39. 39.
    Hsu, C., Huang, H., & Schuschel, D. (2002 ). The ANNIGMAwrapper approach to fast feature selection for neural nets. IEEE Transaction son Systems, Man, and Cybernetics—Part B:Cybernetics, 32(2), 207–212.Google Scholar
  40. 40.
    Ghareb, A., Bakar, A., & Hamdan, A. (2015). Hybrid feature selection based on enhanced genetic algorithm for text categorization. In Expert systems with applications. Elsevier.Google Scholar
  41. 41.
    Pedergnan, M. (2013). A novel technique for optimal feature selection in attribute profiles based on genetic algorithms. IEEE Transactions on Geoscience and Remote Sensing, 51(6).Google Scholar
  42. 42.
    Sivagaminathan, R. K., & Ramakrishnan, S. (2007). A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert systems with applications, 33, 49–60.Google Scholar
  43. 43.
    Aghdam, M. H., Aghaee, N. G., & Basiri, M. E. (2009). Text feature selection using ant colony optimization. Expert systems with applications, 36, 6843–6853.Google Scholar
  44. 44.
    Wang, X., Yang, J., Teng, X., Xia, W., & Jensen, R. (2006). Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 28(4), 459–471.Google Scholar
  45. 45.
    Liu, Z., Liu, S., Liu, L., Sun, J., Peng, X., & Wang, T. (2015). Sentiment recognition of online course reviews using multi-swarm optimization-based selected features. In Neuro-Computing. Elsevier.Google Scholar
  46. 46.
    Kinnear, K. E. (1994). A perspective on the work in this book. In K. E. Kinnear (Ed.), Advances in genetic programming (pp. 3–17). Cambridge: MIT Press.Google Scholar
  47. 47.
    Mitchell, M. (1995). Genetic algorithms: An overview. Complexity, 1(1), 31–39.CrossRefGoogle Scholar
  48. 48.
    Haupt, R. L., & Haupt, S. E. (1998). Practical genetic algorithms. New York: Wiley Interscience.zbMATHGoogle Scholar
  49. 49.
    Hasancebi, O., & Erbatur, F. (2000). Evaluation of crossover techniques in genetic algorithm based optimum structural design. Computer & Structures, 78, 435–448.CrossRefGoogle Scholar
  50. 50.
    Mitchell, M. (1996). An Introduction to genetic algorithms. Cambridge: MIT Press.zbMATHGoogle Scholar
  51. 51.
    Koza, J. R. (1994). Introduction to genetic programming. In K. E. Kinnear (Ed.), Advances in genetic programming (pp. 21–41). Cambridge: MIT Press.Google Scholar
  52. 52., 30th March, 2018.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Savina Colaco
    • 1
    Email author
  • Sujit Kumar
    • 1
  • Amrita Tamang
    • 1
  • Vinai George Biju
    • 1
  1. 1.Department of CSEChrist(Deemed to Be University)BangaloreIndia

Personalised recommendations