Skip to main content

Machine Learning and Meta-heuristic Algorithms for Renewable Energy: A Systematic Review

  • Chapter
  • First Online:
Advanced Control and Optimization Paradigms for Wind Energy Systems

Part of the book series: Power Systems ((POWSYS))

Abstract

The demand for energy is become essential due to industrial activities and increasing agricultural of any nation. According to the aforementioned, the renewable energy resources available are very suitable to meet the ever-growing requirement of energy by the humanity rather causing any harmful effects to nature. Therefore, several research studies have been introduced in the renewable energy field such as solar, wind, biomass, and biogas due to the clean and sustainability. To better scheme and utilize this energy resource, good forecasting and optimization are necessary and intrinsic. So, this review introduces an overview of the renewable energy forecasting techniques that have been utilized in this field based on meta-heuristic optimization algorithms and machine learning (ML). In addition, several challenges have been addressed, recommendations for future research are provided, and a comprehensive bibliography is conducted. Eventually, in general speaking, this comprehensive review of renewable energy resources may help the researchers, energy planners, and policymakers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev 11(7):1388–1413

    Article  Google Scholar 

  2. Farooq M, Ramli A, Naeem A (2015) Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew Energy 76:362–368

    Article  Google Scholar 

  3. Jebaraj S, Iniyan S (2006) A review of energy models. Renew Sustain Energy Rev 10(4):281–311

    Article  Google Scholar 

  4. Esen H et al (2008) Performance prediction of a ground-coupled heat pump system using artificial neural networks. Expert Syst Appl 35(4):1940–1948

    Article  Google Scholar 

  5. Kalogirou Soteris A (2006) Artificial neural networks in energy applications in buildings. Int J Low-Carbon Technol 1(3):201–216

    Article  Google Scholar 

  6. Kalogirou Soteris A (2003) Artificial intelligence for the modeling and control of combustion processes: a review. Prog Energy Combust Sci 29(6):515–566

    Article  Google Scholar 

  7. Vapnik V (2013) The nature of statistical learning theory. Springer science & business media

    Google Scholar 

  8. Hamad A, Houssein EH, Hassanien AE, Fahmy AA, Bhattacharyya S (2018) A hybrid gray wolf optimization and support vector machines for detection of epileptic seizure. Series in machine perception and artificial intelligence, hybrid metaheuristics, pp 197–225

    Google Scholar 

  9. Hassanien AE, Kilany M, Houssein EH, AlQaheri H (2018) Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression. Biomed Signal Process Control 45:182–191

    Article  Google Scholar 

  10. Ismail FH, Houssein EH, Hassanien AE (2018) Chaotic bird swarm optimization algorithm. In: International conference on advanced intelligent systems and informatics. Springer, Cham

    Google Scholar 

  11. Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167:69–85

    Article  Google Scholar 

  12. Ebrahimi A, Khamehchi E (2016) Sperm whale algorithm: an effective metaheuristic algorithm for production optimization problems. J Nat Gas Sci Eng 29:211e222

    Article  Google Scholar 

  13. Seyedali Mirjalili SCA (2016) A sine cosine algorithm for solving optimization problems. Knowl Syst 96:120–133

    Article  Google Scholar 

  14. Zheng Yu-Jun (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Op Res 55:1–11

    Article  MathSciNet  MATH  Google Scholar 

  15. Seyedali M (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Google Scholar 

  16. Wang G-G, Deb S, Coelho LDS Elephant herding optimization. In: 2015 3rd international symposium on computational and business intelligence

    Google Scholar 

  17. Seyedali M, Mirjalili SM, Lewis A, Wolf G (2014) Optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  18. Sauber AM, Nasef MM, Houssein EH, Hassanien AE (2018) Parallel whale optimization algorithm for solving constrained and unconstrained optimization problems. arXiv:1807.09217

  19. Hussien AG et al (2019) S-shaped binary whale optimization algorithm for feature selection. Recent Trends Signal Image Process. Springer, Singapore, pp 79–87

    Google Scholar 

  20. Hussien AG, Hassanien AE, Houssein EH (2017) Swarming behaviour of salps algorithm for predicting chemical compound activities. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), IEEE

    Google Scholar 

  21. Tharwat A et al (2017) MOGOA algorithm for constrained and unconstrained multi-objective optimization problems. Appl Intell 1–16

    Google Scholar 

  22. Ewees AA, Elaziz MA, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Exp Syst Appl

    Google Scholar 

  23. Hassanien AE et al (2018) Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression. Biomed Signal Process Control 45:182–191

    Article  Google Scholar 

  24. Houssein EH, Ewees AA, ElAziz MA (2018) Improving twin support vector machine based on hybrid swarm optimizer for heartbeat classification. Pattern Recognit Image Anal 28(2):243–253

    Article  Google Scholar 

  25. Gaurav D, Vijay K (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Google Scholar 

  26. Salmani MH, Eshghi K (2017) A metaheuristic algorithm based on chemotherapy science: CSA. J Opt

    Google Scholar 

  27. Long C, Wu X, Yan W (2018) Artificial flora (AF) optimization algorithm. Appl Sci 8(3):329

    Google Scholar 

  28. Gaurav D, Vijay K (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl Syst

    Google Scholar 

  29. Hamed SH (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspired Comput 1(1–2):71–79

    Google Scholar 

  30. Behzad J, Abdolreza H, Seyedali M (2015) Ions motion algorithm for solving optimization problems. Appl Soft Comput 32:72–79

    Google Scholar 

  31. Kilany M, Houssein EH, Hassanien AE, Badr A (2017) Hybrid water wave optimization and support vector machine to improve EMG signal classification for neurogenic disorders. In: 2017 12th international conference on computer engineering and systems (ICCES). IEEE, pp 686–691

    Google Scholar 

  32. Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), IEEE

    Google Scholar 

  33. Ahmed MM et al (2017) Maximizing lifetime of wireless sensor networks based on whale optimization algorithm. In: International Conference on Advanced Intelligent Systems and Informatics. Springer, Cham

    Google Scholar 

  34. Houssein EH, Wazery YM (2017) Vortex search topology control algorithm for wireless sensor networks. Int J Intell Eng Syst 10(6):87–97

    Article  Google Scholar 

  35. Bhaskar K, Singh SN (2012) AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3(2):306–315

    Article  Google Scholar 

  36. Shu F, Liao James R, Ryuichi Y, Luonan C, Wei-Jen L (2009) Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans Energy Conv 24(2):474–482

    Google Scholar 

  37. Lew D, Milligan M, Jordan G, Freeman L, Miller N, Clark K, Piwko R (2009) How do wind and solar power affect grid operations: the western wind and solar integration study. In: 8th international workshop on large scale integration of wind power and on transmission networks for offshore wind farms, pp 14–15

    Google Scholar 

  38. Cameron P, Debra L, Jim M, Sam C, Scott E, Eric G (2008) Creating the dataset for the western wind and solar integration study (USA). Wind Eng 32(4):325–338

    Google Scholar 

  39. Yuanyuan F, Guijun Y, Jihua W, Xiaoyu S, Haikuan F (2014) Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput Electron Agric 100:51–59

    Google Scholar 

  40. Gnyp Martin L, Yuxin M, Fei Y, Ustin Susan L, Yu K, Yinkun Y, Shanyu H, Georg B (2014) Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res 155:42–55

    Article  Google Scholar 

  41. Shuai G, Zheng N, Ni H, Xuehui H (2013) Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2. Int J Appl Earth Observ Geoinf 24:1–8

    Google Scholar 

  42. Xiuliang J, Guijun Y, Xu X, Hao Y, Haikuan F, Zhenhai L, Jiaxiao S, Yubin L, Chunjiang Z (2015) Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens 7(10):13251–13272

    Google Scholar 

  43. Valentina B, Michela C, Giulia F, Elena V (2012) The future prospect of PV and CSP solar technologies: an expert elicitation survey. Energy Policy 49:308–317

    Article  Google Scholar 

  44. Klaus B, Philipp G, Luise H (2015) Comparing the incomparable: Lessons to be learned from models evaluating the feasibility of Desertec. Energy 82:905–913

    Article  Google Scholar 

  45. Iglesias G, Carballo R (2011) Wave resource in El Hierroan island towards energy self-sufficiency. Renew Energy 36(2):689–698

    Article  Google Scholar 

  46. Merino J, Veganzones C, Sanchez JA, Martinez S, Platero Carlos A (2012) Power system stability of a small sized isolated network supplied by a combined wind-pumped storage generation system: A case study in the Canary Islands. Energies 5(7):2351–2369

    Article  Google Scholar 

  47. Ashnani MH, Mohammadi AJ, Hashim H, Hasani E (2014) A source of renewable energy in Malaysia, why biodiesel? Renew Sustain Energy Rev 35:244–257

    Article  Google Scholar 

  48. Lee HV, Juan JC, Taufiq-Yap YH (2015) Preparation and application of binary acidbase CaOLa2 O3 catalyst for biodiesel production. Renew Energy 74:124–132

    Article  Google Scholar 

  49. BDO Deutsche Warentreuhand AG, Der Biogas market nach der EEG-Novelle (The biogas market after the Renewable Energy Sources Act amendment), p 89 (2008)

    Google Scholar 

  50. Koppe P, Stozek A (1993) Municipal wastewaterits ingredients according to origin, composition and reactions in waste water treatment processes including biosolid. Auflage, Essen

    Google Scholar 

  51. Batstone Damien J, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73

    Article  Google Scholar 

  52. Strik David PBTB, Domnanovich AM, Zani L, Braun R, Holubar P (2005) Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB neural network toolbox. Environ Model Softw 20(6):803–810

    Article  Google Scholar 

  53. Shamshirband S et al (2014) Survey of four models of probability density functions of wind speed and directions by adaptive neuro-fuzzy methodology. Adv Eng Softw (76):148–153

    Article  Google Scholar 

  54. Kolhe M, Lin TC, Maunuksela J (2011) GA-ANN for short-term wind energy prediction. In: Power and energy engineering conference (APPEEC), 2011 Asia-Pacific. IEEE

    Google Scholar 

  55. Peng H, Liu F, Yang X (2013) A hybrid strategy of short term wind power prediction. Renew Energy 50:590–595

    Article  Google Scholar 

  56. Kalogirou Soteris A (2000) Applications of artificial neural-networks for energy systems. Appl Energy 67(1):17–35

    Article  Google Scholar 

  57. Jursa R, Rohrig K (2008) Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int J Forecast 24(4):694–709

    Article  Google Scholar 

  58. Chen B et al (2009) Wind speed prediction using OLS algorithm based on RBF neural network. In: 2009 Asia-Pacific power and energy engineering conference, IEEE

    Google Scholar 

  59. Fonte PM, Silva GX, Quadrado JC (2005) Wind speed prediction using artificial neural networks. WSEAS Trans Syst 4(4):379–384

    Google Scholar 

  60. Li G, Shi J, Zhou J (2011) Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew Energy 36(1):352–359

    Article  Google Scholar 

  61. Zhao P et al (2012) Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renew Energy 43:234–241

    Article  Google Scholar 

  62. Ata R (2015) Artificial neural networks applications in wind energy systems: a review. Renew Sustain Energy Rev 49:534–562

    Article  Google Scholar 

  63. Mohandes M, Rehman S, Rahman SM (2011) Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 88(11):4024–4032

    Article  Google Scholar 

  64. Monfared M, Rastegar H, Kojabadi HM (2009) A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 34(3):845–848

    Article  Google Scholar 

  65. Catalo JPS, Pousinho HMI, Mendes VMF (2009) An artificial neural network approach for short-term wind power forecasting in Portugal. In: 15th international conference on in intelligent system applications to power systems, ISAP ’09, pp 1–5

    Google Scholar 

  66. Gopi ES, Palanisamy P (2015) Neural network based class-conditional probability density function using kernel trick for supervised classifier. Neurocomputing 154:225–229

    Article  Google Scholar 

  67. An S, Shi H, Qinghua H, Li X, Dang Jianwu (2014) Fuzzy rough regression with application to wind speed prediction. Inf Sci 282:388–400

    Article  MathSciNet  Google Scholar 

  68. Sheela KG, Deepa SN (2013) Neural network based hybrid computing model for wind speed prediction. Neurocomputing 122:425–429

    Article  Google Scholar 

  69. Liu Z, Gao W, Wan Y-H, Muljadi E (2012) Wind power plant prediction by using neural networks. In: 2012 IEEE energy conversion congress and exposition (ECCE), pp 3154–3160, IEEE

    Google Scholar 

  70. Prez EC, Algredo-Badillo I, Rodrguez VHG (2012) Performance analysis of ANFIS in short term wind speed prediction. IJCSI Int J Comput Sci Iss 9(3)

    Google Scholar 

  71. Wang J et al (2015) Short-term wind speed forecasting using support vector regression optimized by cuckoo optimization algorithm. Math Probl Eng

    Google Scholar 

  72. Santamaría-Bonfil G, Reyes-Ballesteros A, Gershenson C (2016) Wind speed forecasting for wind farms: a method based on support vector regression. Renew Energy 85:790–809

    Article  Google Scholar 

  73. Salcedo-Sanz S et al (2011) Short term wind speed prediction based on evolutionary support vector regression algorithms. Exp Syst Appl 38(4):4052–4057

    Article  Google Scholar 

  74. Chen X et al (2015) Short-term wind speed forecasting study and its application using a hybrid model optimized by cuckoo search. Math Probl Eng

    Google Scholar 

  75. Koivisto M, Seppnen J, Mellin I, Ekstrm J, Millar John, Mammarella Ivan, Komppula Mika, Lehtonen Matti (2016) Wind speed modeling using a vector autoregressive process with a time-dependent intercept term. Int J Electr Power Energy Syst 77:91–99

    Article  Google Scholar 

  76. Catalo JPS, Pousinho HMI, Mendes VMF (2009) An artificial neural network approach for short-term wind power forecasting in Portugal. In: 15th international conference on intelligent system applications to power systems, 2009. ISAP ’09, IEEE

    Google Scholar 

  77. Gopi ES, Palanisamy P (2015) Neural network based class-conditional probability density function using kernel trick for supervised classifier. Neurocomputing 154:225–229

    Article  Google Scholar 

  78. Sheela KG, Deepa SN (2013) Neural network based hybrid computing model for wind speed prediction. Neurocomputing 122:425–429

    Article  Google Scholar 

  79. Liu Z et al (2012) Wind power plant prediction by using neural networks. In: Energy conversion congress and exposition (ECCE), IEEE

    Google Scholar 

  80. Wu Q (2010) A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Exp Syst Appl 37(3):2388–2394

    Article  Google Scholar 

  81. Ren C et al (2014) Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl Syst 56:226–239

    Article  Google Scholar 

  82. Douak F, Melgani F, Benoudjit N (2013) Kernel ridge regression with active learning for wind speed prediction. Appl energy 103:328–340

    Article  Google Scholar 

  83. De Giorgi M et al (2014) Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 7(8):5251–5272

    Article  Google Scholar 

  84. Potonik P, Strmnik E, Govekar E (2015) Linear and neural network-based models for short-term heat load forecasting. Strojniki vestnik-J Mech Eng 61(9):543–550

    Article  Google Scholar 

  85. Azad HB, Mekhilef S, Ganapathy VG (2014) Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans Sustain Energy 5(2):546–553

    Article  Google Scholar 

  86. Kusiak A, Zheng H, Song Z (2009) Short-term prediction of wind farm power: a data mining approach. IEEE Trans Energy Conv 24(1):125–136

    Article  Google Scholar 

  87. Osama S, Darwish A, Houssein EH, Hassanien AE, Fahmy AA, Mahrous A (2017) Long-term wind speed prediction based on optimized support vector regression. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), pp 191–196, IEEE

    Google Scholar 

  88. Monfared M, Rastegar H, Kojabadi HM (2009) A new strategy for wind speed forecasting using artificial intelligent methods. Renew energy 34(3):845–848

    Article  Google Scholar 

  89. Osama S, Houssein EH, Hassanien AE, Fahmy AY (2017) Forecast of wind speed based on whale optimization algorithm. In: Proceedings of the 1st international conference on internet of things and machine learning, ACM, p 62

    Google Scholar 

  90. Hamad A, Houssein EH, Hassanien AE, Fahmy AA (2016) Feature extraction of epilepsy EEG using discrete wavelet transform. In: Computer engineering conference (ICENCO), 2016 12th international, IEEE, pp 190–195

    Google Scholar 

  91. Guo Z, Chi D, Jie W, Zhang W (2014) A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm. Energy Conv Manag 84:140–151

    Article  Google Scholar 

  92. Sallis PJ, Claster W, Hernndez S (2011) A machine-learning algorithm for wind gust prediction. Comput Geosci 37(9):1337–1344

    Article  Google Scholar 

  93. Douak F, Melgani F, Benoudjit N (2013) Kernel ridge regression with active learning for wind speed prediction. Appl Energy 103:328–340

    Article  Google Scholar 

  94. Huang C-L, Dun J-F (2008) A distributed PSOSVM hybrid system with feature selection and parameter optimization. Appl Soft Comput 8(4):1381–1391

    Article  Google Scholar 

  95. Hamad A, Houssein EH, Hassanien AE, Fahmy AA (2017) A hybrid EEG signals classification approach based on grey wolf optimizer enhanced SVMs for epileptic detection. In: International conference on advanced intelligent systems and informatics. Springer, Cham, pp 108–117

    Google Scholar 

  96. Hamad A, Houssein EH, Hassanien AE, Fahmy AA (2018) Hybrid grasshopper optimization algorithm and support vector machines for automatic seizure detection in EEG signals. In: International conference on advanced machine learning technologies and applications. Springer, Cham, pp 82–91

    Chapter  Google Scholar 

  97. Osama S, Houssein EH, Hassanien AE, Fahmy AA (2017) Forecast of wind speed based on whale optimization algorithm. In: International conference on internet of things and machine learning (IML, 2017) Liverpool city. ACM, United Kingdom

    Google Scholar 

  98. Osama S, Houssein EH, Darwish A, Hassanien AE, Fahmy AA (2018) An optimized support vector regression using whale optimization for long term wind speed forecasting. Series in machine perception and artificial intelligence, hybrid metaheuristics, pp 171–196

    Google Scholar 

  99. Ren C, An N, Wang J, Li L, Bin Hu, Shang Duo (2014) Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl Syst 56:226–239

    Article  Google Scholar 

  100. Jiang Y, Song Z, Kusiak A (2013) Very short-term wind speed forecasting with Bayesian structural break model. Renew Energy 50:637–647

    Article  Google Scholar 

  101. Fei S, He Y (2015) Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int J Electr Power Energy Syst 73:625–631

    Article  Google Scholar 

  102. Wu Q (2010) A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Exp Syst Appl 37(3):2388–2394

    Article  Google Scholar 

  103. Carneiro TC, Melo SP, Carvalho PCM, Braga APS (2016) Particle swarm optimization method for estimation of Weibull parameters: a case study for the Brazilian northeast region. Renew Energy 86:751–759

    Article  Google Scholar 

  104. Houssein EH (2017) Particle swarm optimization-enhanced twin support vector regression for wind speed forecasting. J Intell Syst De Gruyter

    Google Scholar 

  105. Fei S, He Y (2015) Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int J Electr Power Energy Syst 73:625–631

    Article  Google Scholar 

  106. Mahto T, Mukherjee V (2016) Evolutionary optimization technique for comparative analysis of different classical controllers for an isolated winddiesel hybrid power system. Swarm Evolut Comput 26:120–136

    Google Scholar 

  107. Soon JJ, Low K-S (2012) Optimizing photovoltaic model parameters for simulation. In: IEEE international industrial electronics (ISIE)

    Google Scholar 

  108. Azab M (2012) Optimal power point tracking for stand-alone PV system using particle swarm optimization. Int J Renew Energy Technol

    Google Scholar 

  109. Ishaque K, Salam Z, Amjad M, Mekhilef S (2012) An improved particle swarm optimization (PSO) based MPPT for PV with reduced steady-state oscillation. IEEE Trans Power Electron 27

    Google Scholar 

  110. Tumbelaka HH, Miyatake M (2010) A grid current-controlled inverter with particle swarm optimization MPPT for PV generators. World Acad Sci Eng Technol 43

    Google Scholar 

  111. Fu Q, Tong N (2010) A new PSO algorithm based on adaptive grouping for photovoltaic MPP prediction. In: International workshop on intelligent systems and applications, China

    Google Scholar 

  112. Boutasseta N (2012) PSO-PI based control of photovoltaic arrays. Int J Comput Appl

    Google Scholar 

  113. Ngan MS, Tan CW (2011) Multiple peaks tracking algorithm using particle swarm optimization incorporated with artificial neural network. World Acad Sci Eng Technol 58

    Google Scholar 

  114. Wang L, Zhou X, Zhu X, Dong Z, Guo Wenshan (2016) Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J 4(3):212–219

    Article  Google Scholar 

  115. Lpez PR, Jurado F, Ruiz Reyes N, Garca Galn S, Gmez M (2008) Particle swarm optimization for biomass-fuelled systems with technical constraints. Eng Appl Artif Intell 21(8):1389–1396

    Google Scholar 

  116. Izquierdo J, Minciardi R, Montalvo I, Robba M, Tavera M (2008) Particle swarm optimization for the biomass supply chain strategic planning. In: Proceedings of the international congress on environmental modelling and software, pp 1272–1280

    Google Scholar 

  117. Sedighizadeh M, Rafiei M, Hakimi A (2013) Optimizing a typical biomass fueled power plant using genetic algorithm and binary particle swarm optimization. Int J Tech Phys Probl Eng 5:15–21

    Google Scholar 

  118. Chen X, Bin X, Mei C, Ding Yuhan, Li Kangji (2018) Teaching learning based artificial bee colony for solar photovoltaic parameter estimation. Appl Energy 212:1578–1588

    Article  Google Scholar 

  119. Polo J, Tllez FM, Tapia C (2016) Comparative analysis of long-term solar resource and CSP production for bankability. Renew Energy 90:38–45

    Article  Google Scholar 

  120. Rezvani A, Gandomkar M (2017) Simulation and control of intelligent photovoltaic system using new hybrid fuzzy-neural method. Neural Comput Appl 28(9):2501–2518

    Article  Google Scholar 

  121. Olatomiwa L et al (2015) A support vector machine firefly algorithm-based model for global solar radiation prediction. Solar Energy 115:632–644

    Article  Google Scholar 

  122. Munshi AA, Mohamed Yasser A-RI (2017) Comparisons among Bat algorithms with various objective functions on grouping photovoltaic power patterns. Solar Energy 144:254–266

    Article  Google Scholar 

  123. Et-torabi K et al (2017) Parameters estimation of the single and double diode photovoltaic models using a GaussSeidel algorithm and analytical method: a comparative study. Energy Conv Manage 148:1041–1054

    Article  Google Scholar 

  124. Tong NT, Pora W (2016) A parameter extraction technique exploiting intrinsic properties of solar cells. Appl Energy 176:104–115

    Article  Google Scholar 

  125. Patel SJ, Panchal AK, Kheraj V (2014) Extraction of solar cell parameters from a single currentvoltage characteristic using teaching learning based optimization algorithm. Appl Energy 119:384–393

    Article  Google Scholar 

  126. Prasanth RJ, Sudhakar Babu T, Rajasekar N (2017) A comprehensive review on solar PV maximum power point tracking techniques. Renew Sustain Energy Rev 67:826–847

    Google Scholar 

  127. Nassar-Eddine I et al (2016) Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: a comparative study. Energy Conv Manage 119:37–48

    Article  Google Scholar 

  128. Gao X et al (2018) Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Conv Manage 157:460–479

    Article  Google Scholar 

  129. Babu TS et al (2016) Parameter extraction of two diode solar PV model using fireworks algorithm. Solar Energy 140:265–276

    Article  Google Scholar 

  130. Guo L et al (2016) Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Conv Manage 108:520–528

    Article  Google Scholar 

  131. Chen X et al (2016) Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy 99:170–180

    Article  Google Scholar 

  132. Allam D, Yousri DA, Eteiba MB (2016) Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame optimization algorithm. Energy Conv Manage 123:535–548

    Article  Google Scholar 

  133. Saad NH, El-Sattar AA, Mansour AE-AM (2016) Improved particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability. Renew Energy 85:181–194

    Article  Google Scholar 

  134. Fathy A, Rezk H (2017) Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renew Energy 111:307–320

    Article  Google Scholar 

  135. Ali EE et al (2016) Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustain Energy Technol Assess 17:68–76

    Google Scholar 

  136. Li W et al (2017) A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems. Renew Energy 112:166–186

    Article  Google Scholar 

  137. Chin VJ, Salam Z, Ishaque K (2016) An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution. Energy Conv Manage 124:42–50

    Article  Google Scholar 

  138. Louzazni M et al (2018) Metaheuristic algorithm for photovoltaic parameters: comparative study and prediction with a firefly algorithm. Appl Sci 8(3):339

    Article  Google Scholar 

  139. Derick M et al (2017) An improved optimization technique for estimation of solar photovoltaic parameters. Solar Energy 157:116–124

    Article  Google Scholar 

  140. Abbassi A et al (2017) An improved single-diode model parameters extraction at different operating conditions with a view to modeling a photovoltaic generator: a comparative study. Solar Energy 155:478–489

    Article  Google Scholar 

  141. Elena CL, Saul PO, Hernandez M, Bandarra FEP (2017) Comparison of four methods for parameter estimation of mono-and multi-junction photovoltaic devices using experimental data. Renew Sustain Energy Rev

    Google Scholar 

  142. Baig H et al (2018) Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy. Energy 147:547–560

    Article  Google Scholar 

  143. Jordehi AR (2018) Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Solar Energy 159:78–87

    Article  Google Scholar 

  144. Xu S, Wang Y (2017) Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Conv Manage 144:53–68

    Article  Google Scholar 

  145. Lin P et al (2017) Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm. Solar Energy 144:594–603

    Article  Google Scholar 

  146. Kler D et al (2017) PV cell and module efficient parameters estimation using evaporation rate based water cycle algorithm. Swarm Evolut Comput 35:93–110

    Article  Google Scholar 

  147. Barth N et al (2016) PV panel single and double diode models: optimization of the parameters and temperature dependence. Solar Energy Mater Solar Cells 148:87–98

    Article  Google Scholar 

  148. Li W et al (2016) Six-parameter electrical model for photovoltaic cell/module with compound parabolic concentrator. Solar Energy 137:551–563

    Article  Google Scholar 

  149. Rohit AK et al (2017) Virtual lab based real-time data acquisition, measurement and monitoring platform for solar photovoltaic module. Res Eff Technol 3(4):446–451

    Article  Google Scholar 

  150. Cotfas DT, Cotfas PA, Kaplanis S (2016) Methods and techniques to determine the dynamic parameters of solar cells. Renew Sustain Energy Rev 61:213–221

    Article  Google Scholar 

  151. Jordehi AR (2016) Parameter estimation of solar photovoltaic (PV) cells: a review. Renew Sustain Energy Rev 61:354–371

    Article  Google Scholar 

  152. Humada AM et al (2016) Solar cell parameters extraction based on single and double-diode models: a review. Renew Sustain Energy Rev 56:494–509

    Article  Google Scholar 

  153. Yu K, Chen X, Wang X, Wang Z (2017) Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization. Energy Conv Manage 145:233–246

    Article  Google Scholar 

  154. Alam DF, Yousri DA, Eteiba MB (2015) Flower pollination algorithm based solar PV parameter estimation. Energy Conv Manage 101:410–422

    Article  Google Scholar 

  155. Oliva D, El Aziz MA, Hassanien AE (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154

    Article  Google Scholar 

  156. Yu K et al (2017) Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization. Energy Conv Manage 145:233–246

    Article  Google Scholar 

  157. Attia A-F, El Sehiemy RA, Hasanien HM (2018) Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int J Electric Power Energy Syst 99:331–343

    Article  Google Scholar 

  158. Prasanth RJ, Rajasekar N (2017) A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC). Energy 118:512–525

    Article  Google Scholar 

  159. Titri S et al (2017) A new MPPT controller based on the Ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Appl Soft Comput 58:465–479

    Article  Google Scholar 

  160. Chaieb H, Sakly Anis (2018) A novel MPPT method for photovoltaic application under partial shaded conditions. Solar Energy 159:291–299

    Article  Google Scholar 

  161. Mirhassani SM et al (2015) An improved particle swarm optimization based maximum power point tracking strategy with variable sampling time. Int J Electric Power Energy Syst 64:761–770

    Article  Google Scholar 

  162. Soufyane Benyoucef A et al (2015) Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl Soft Comput 32:38–48

    Article  Google Scholar 

  163. Diab AAZ, Rezk H (2017) Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system. Solar Energy 157:171–186

    Article  Google Scholar 

  164. Chao K-H, Lin Y-S, Lai U-D (2015) Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays. Appl Energy 158:609–618

    Article  Google Scholar 

  165. Babu TS, Rajasekar N, Sangeetha K (2015) Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition. Appl Soft Comput 34:613–624

    Google Scholar 

  166. Shi J, Zhang W, Zhang Y, Xue F, Yang T (2015) MPPT for PV systems based on a dormant PSO algorithm. Electric Power Syst Res 123:100–107

    Article  Google Scholar 

  167. Rezk H, Fathy A, Abdelaziz AY (2017) A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions. Renew Sustain Energy Rev 74:377–386

    Article  Google Scholar 

  168. Ahmed J, Salam Z (2014) A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability. Appl Energy 119:118–130

    Article  Google Scholar 

  169. Askarzadeh A, Rezazadeh A (2013) Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Solar Energy 90:123–133

    Article  Google Scholar 

  170. Jiang P, Li X, Ruina X, Zhang F (2016) Heat extraction of novel underground well pattern systems for geothermal energy exploitation. Renew Energy 90:83–94

    Article  Google Scholar 

  171. Martnez-Lucas G, Sarasa JI, Snchez-Fernndez J, Wilhelmi JR (2016) Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel. Renew Energy 90:362–376

    Google Scholar 

  172. Boubaker K, Colantoni A, Marucci A, Longo L, Gambella Filippo, Cividino Sirio, Gallucci Francesco, Monarca Danilo, Cecchini Massimo (2016) Perspective and potential of CO\({}_2\): a focus on potentials for renewable energy conversion in the Mediterranean basin. Renew Energy 90:248–256

    Article  Google Scholar 

  173. Alves JCL, Henriques CB, Poppi RJ (2012) Determination of diesel quality parameters using support vector regression and near infrared spectroscopy for an in-line blending optimizer system. Fuel 97:710–717

    Article  Google Scholar 

  174. Wolf C, McLoone S, Bongards M (2008) Biogas plant optimization using genetic algorithms and particle swarm optimization, pp 244–249

    Google Scholar 

  175. Gsanger S, Pitteloud Jean-Daniel (2012) World wind energy report 2011. World Wind Energy Association, Bonn, Germany

    Google Scholar 

  176. Naam R (2013) The infinite resource: the power of ideas on a finite planet, UPNE

    Google Scholar 

  177. Hardcastle JL Mining industry slow to adopt renewable energy tech, 28 Oct 2013. http://www.energymanagertoday.com/renewables-in-the-mining-industry-draft-096453/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam H. Houssein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houssein, E.H. (2019). Machine Learning and Meta-heuristic Algorithms for Renewable Energy: A Systematic Review. In: Precup, RE., Kamal, T., Zulqadar Hassan, S. (eds) Advanced Control and Optimization Paradigms for Wind Energy Systems. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-5995-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5995-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5994-1

  • Online ISBN: 978-981-13-5995-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics