Skip to main content
  • 526 Accesses

Abstract

Pneumatic servo control originated around World War II and has been widely used in astronavigation, aerocraft, and general industry. This chapter introduces the background, types, and characteristics of pneumatic servo system and describes the classification of pneumatic control valves and the flow characteristics of typical orifices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Yin Y, Yu C, Lu T et al (2006) Study on characteristics of hydraulic accumulator and cylinder in aircraft under extreme temperature environment. Fluid Transm Control 5:10–13

    Google Scholar 

  2. Yin Y (2012) Electro-hydraulic servo control theory and application technology in extreme environment. Shanghai Science and Technology Press, Shanghai

    Google Scholar 

  3. Yin Y, Yu C, Lu T et al (2006) Study on air chamber pressure characteristics of aircraft hydraulic control system. Autopilot Infrared Technol 2:8–12

    Google Scholar 

  4. Yin Y (2001) Research on characteristics of electro-hydraulic servo valve of aircraft under extreme environment. National Natural Science Foundation funded project completion report (50775161), 20 Jan 2001

    Google Scholar 

  5. Yin Y (2008) Key basic theory research of aircraft steering gear system. Shanghai Pujiang Talent Plan (Class A) Summary Report (06PJ14092), 30 Sept 2008

    Google Scholar 

  6. Yin Y (2009) Theoretical research on integrated design of fuel cell vehicle super high pressure relief valve group. Shanghai Baiyulan Science and Technology Talent Fund Summary Report (2008B110), 28 May 2009

    Google Scholar 

  7. Yin Y (2010) Hydrogen booster above 45 MPa pressure control and regulation technology research. National High Technology Research and Development Program (863 Program) project acceptance report (2007AA05Z119), 30 June 2010

    Google Scholar 

  8. Yin Y (2013) R&D and industrialization of key equipment for underground continuous wall and complex ground pile foundation construction. National Science and Technology Support Plan 2012 Annual Report

    Google Scholar 

  9. Yin Y (2013) Pneumatic asymmetry mechanism and high-speed pneumatic control of air-resistance gas volume. National Natural Science Foundation of China, 2012 Annual Report

    Google Scholar 

  10. Yin Y, Li S, Fu J et al (2009) Study on outlet temperature characteristics of vehicle pneumatic pressure reducing valve for hydrogen energy vehicles. Chin J Constr Mach

    Google Scholar 

  11. Yin Y, Shu Y, Wu J et al (2007) Study on pressure characteristics of asymmetric pneumatic servo valve with asymmetric load-bearing capacity. China Mech Eng 18(18):2167–2173

    Google Scholar 

  12. Yin Y, Li C, Yan M (2010) Characteristics of pneumatic servovalve with symmetrical unequal load and weight. J Shanghai Jiaotong Univ 44(4):500–505

    Google Scholar 

  13. Araki K, Yin Y, Ishino Y, Chen J (1997) Characteristics of asymmetric electropneumatic servo valve for pneumatic force control. In: Proceedings of hydraulics and pneumatics Society in Autumn, pp 72–74

    Google Scholar 

  14. Yin Y, Araki K, Ishino Y (1997) Characteristics of pneumatic force control system using a single acting cylinder. In: Proceedings of 15th symposium on fluid measurement and fluid dynamics and 12th symposium on fluid control, 45/48

    Google Scholar 

  15. Qu Y (1986) Pneumatic servo system. Shanghai Jiaotong University Press, Shanghai

    Google Scholar 

  16. Araki K, Yin Y (1998) High speed pneumatic force control using asymmetric servo valve and single acting cylinder for resistance spot welding amchine (1st report). J Jpn Hydraul Pneumatic Soc 29(1):9–15

    Google Scholar 

  17. Yin Y, Araki K (1999) High speed pneumatic force control using asymmetric servo valve and single acting cylinder for resistance spot welding amchine (2st report, experimental of asymmetric electropneumatic servo valve and hardware compensation of closed loop pressure control system). J Jpn Hydraul Pneumatic Soc 30(2):35–41

    Google Scholar 

  18. Araki K, Yin Y (1998) Research on pneumatic force control system for resistance spot welding machine. Mech Des Daily Ind Newspaper 42(2):72–77

    Google Scholar 

  19. Araki K (1971) Characteristics compensation of a force feedback pneumatic servo valve. J Autom Control Soc 7(4):72–81

    Google Scholar 

  20. Araki K (1979) Frequency characteristics of pneumatic spool valves and cylinders with uneven underlaps (1st to 4th report). Hydraul Pneumatics, 1979, 10(1):57–63, 10(6):361–367. 1981, 12(4):262–268, 269–276

    Google Scholar 

  21. Araki K (1989) An indirect measurement method of equivalent negative underlaps of spool valve. Hydraul Pneumatics 20(1):71–76

    Article  Google Scholar 

  22. Araki K (1988) Frequency characteristics of pneumatic underlap valve controlled asymmetric cylinder. Hydraul Pneumatics 19(6):79–85

    Article  Google Scholar 

  23. Araki K (1969) A study on high speed pneumatic servo mechanism. Institute of Industrial Science, The University of Tokyo

    Google Scholar 

  24. Araki K (1984) Frequency response of a pneumatic valve controlled cylinder with an uneven-underlap four-way valve part 2, part 4. J Fluid Control ASME 15(1):22–64

    Google Scholar 

  25. Japanese Society of Hydraulics and Pneumatics (1989) Handbook of hydraulics and pneumatics. Ohm Corporation, Tokyo

    Google Scholar 

  26. Shearer JL (1956) Study of pneumatic processes in the continuous control of motion with compressed air, Part 1 and Part 2. Trans. ASME 78:233–249

    Google Scholar 

  27. Shearer JL (1960) Resistance characteristics of control valve orifices. In: Proc Inst Mech Engrs London, Jan 1960

    Google Scholar 

  28. Blackburn JF, Reethof G, Shearer JL (1960) Fluid power control. Wiley & The Technology Press of M.I.T

    Google Scholar 

  29. Ezekiel FD, Shearer JL (1957) Pressure-flow characteristics of pneumatic valves. Trans ASME 79:1577–1590

    Google Scholar 

  30. Tuttle ER (1975) The cohesion term in van der Waals’s equation of state. Am J Phy 43(7):644–646

    Article  Google Scholar 

  31. Cai M, Xiang C, Li C (2007) Evaluation system of energy consumption and energy loss analysis of pneumatic system J. Mech Eng 43(9):69–74

    Article  Google Scholar 

  32. Yao X, Liang Z (2003) Study on the pressure characteristics of pneumatic jet tube valve servo. Tactical Missile Control Technol 3:39–43

    Google Scholar 

  33. Li B, Yang G (2003) Modeling and simulation of pneumatic artificial muscle system. Chin J Mech Eng 39(7):23–28

    Article  Google Scholar 

  34. Jia G, Wang X, Chen Y et al (2003) Study on the energy control system of pneumatic vehicles. J Zhejiang Univ 37(6):715–718

    Google Scholar 

  35. Bai Y-H, Li X-N (2006) Study on double-loop control with friction torque compensation for swing cylinder position servo system. J Nanjing Univ Sci Technol 30(2):216–222

    MathSciNet  Google Scholar 

  36. Tanaka H (1981) Control of servo cylinder position using proportional solenoid valve. Hydraul Pneumatics 12(4):57–61

    Article  Google Scholar 

  37. Tanaka H (1987) Digital control and application on hydraulics and oneumatics. Modern Book Press, Tokyo

    Google Scholar 

  38. Kagawa T (1981) Consideration of heat transfer in dynamic characteristics of pneumatic resistance capacity system. Hydraul Pneumatics 12(3):209–212

    Article  Google Scholar 

  39. Kagawa T, Ishii S (1992) Study on meter out control characteristics of pneumatic cylinder. Hydraul Pneumatics 23(1):93–100

    Article  Google Scholar 

  40. Kagawa T (1990) Pneumatic thermal characteristics. Hydraul Pneumatics 28(7):15–18

    Google Scholar 

  41. Sanada K (1997) Modeling of transfer function of electrohydraulic servomechanism: consideration of error. In: Proceedings of hydraulics and pneumatics Society in Autumn, pp 102–104

    Google Scholar 

  42. Kawahashi M, Arakawa M (1995) Analysis of sound velocity distribution in Stokes layer in tube column vibration. J Jpn Soc Mech Eng (B) 61(5):158–165

    Google Scholar 

  43. Kohei A (1963) Investigation on basic operation characteristics of compressed air circuit of resistance welding machine. Japan Welding Society

    Google Scholar 

  44. Noritsugu T (1990) Force control of pneumatic servo system using adaptive control. J Autom Control Soc 26(2):196–203

    Google Scholar 

  45. Noritsugu T (1988) Improvement of positioning control by air cylinder. Power Des 26(3):26–31

    Google Scholar 

  46. Noritsugu T, Takaiwa M (1994) Impedance control of pneumatic servo system using disturbance observer. J Autom Control Soc 30(6):667–684

    Google Scholar 

  47. Noritsugu T, Tsutomu W (1990) Control characteristics and its evaluation of pneumatic servo system. Hydraul Pneumatics 21(4):417–424

    Article  Google Scholar 

  48. Araki K, Chen J (1996) Development of position and force control cylinder for resistance spot welding machine. Hydraul Pneumatics 27(7):941–947

    Article  Google Scholar 

  49. Oshima Y, Araki K (1965) Servo mechanism. Ohm Corporation, Tokyuo

    Google Scholar 

  50. Atsushi Y, Tanaka H (1986) Hydraulic and pneumatic engineering. Corona Corporation, Tokyo

    Google Scholar 

  51. Tokyo precision instruments Co., Ltd. (1997) Servo valve catalog

    Google Scholar 

  52. FESTO Co., Ltd. (1997) FESTO pneumatic catalog. MPYE-5–1/4(3/8)-010B

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaobao Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical Publishers

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, Y. (2019). Introduction. In: High Speed Pneumatic Theory and Technology Volume I. Springer, Singapore. https://doi.org/10.1007/978-981-13-5986-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5986-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5985-9

  • Online ISBN: 978-981-13-5986-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics