A 31 ppm/\(^{\circ }\)C Pure CMOS Bandgap Reference by Exploiting Beta-Multiplier

  • R. Nagulapalli
  • K. Hayatleh
  • S. Barker
  • S. Zourob
  • N. Yassine
  • B. Naresh Kumar ReddyEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 892)


Often Bandgap Reference performance limits the SNR of the bio-medical transceiver, hence sensitivity. In this paper, conventional beta multiplier has been explored to design a new low voltage pure CMOS bandgap architecture, which avoids op-amps and resistors, hence very less mismatch and area. Line sensitivity has been improved by adding an extra gain stage in the circuit. The circuit implementation of the proposed technique was done in 65 nm TSMC CMOS technology to generate 460 mV output voltage. The minimum operating voltage of the circuit is 650 mV. Post-layout simulation results are as follows, 31 ppm/\(^{\circ }\)C temperature coefficient against temperature variation of −40\(^{\circ }\) to 125 \(^{\circ }\)C, 0.5% regulation against supply variation of 0.65−1 V and 0.42% PVT variation. Circuit draws 2.3 A current from 650 mV from power-supply. The proposed band gap reference occupies 0.00144 mm\(^{2}\) silicon area.


Bandgap reference Regulation Temperature coefficient Micro watt Bio-medical opamp Monte Carlo 


  1. 1.
    De Vita, G., Iannaccone, G.: A sub-1-V, 10 ppm/\(^{\circ }\)C, nanopower voltage reference generator. IEEE J. Solid-State Circuits 42(7), 1536–1542 (2007)CrossRefGoogle Scholar
  2. 2.
    Brokaw, A.P.: A simple three-terminal IC bandgap reference. IEEE J. Solid-State Circuits SC–9, 388–393 (1974)CrossRefGoogle Scholar
  3. 3.
    Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New Work (2001)Google Scholar
  4. 4.
    Malcovati, P., Maloberti, F., Fiocchi, C., Pruzzi, M.: Curvature-compensated BiCMOS bandgap with 1-V supply voltage. IEEE J. Solid State Circuits 36, 1076–1081 (2001)CrossRefGoogle Scholar
  5. 5.
    Annema, A.-J.: Low-power bandgap references feature DTMOSTs. IEEE J. Solid-State Circuits 34, 949–955 (1999)CrossRefGoogle Scholar
  6. 6.
    Neuteboom, N., Kup, B.M.J., Janssens, J.: A DSP-based hearing instrument IC. IEEE J. Solid-State Circuits 32, 1790–1806 (1997)CrossRefGoogle Scholar
  7. 7.
    Banba, H., et al.: A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits 34, 670–674 (1999)CrossRefGoogle Scholar
  8. 8.
    Nagulapalli, R., Hayatleh, K.: A 0.6 V MOS-only voltage reference for biomedical applications with 40 ppm/\(^{\circ }\)C temperature drift. J. Circuits Syst. Comput. 27(8), 1850128 (2018)CrossRefGoogle Scholar
  9. 9.
    Nagulapalli, R., et al.: J. Circuit Syst. Comp. Scholar
  10. 10.
    Liu, S., Baker, R.J.: Process and temperature performance of a CMOS beta-multiplier voltage reference. In: Proceedings of IEEE MWSCAS 1998, pp. 33–36, August 1998Google Scholar
  11. 11.
    Nicolson, S., Khoman, P.: Improvements in biasing and compensation of CMOS opamps. In: Proceedings of ISCAS, vol. 1, pp. 23–26, May 2004Google Scholar
  12. 12.
    Sansen, W.M.: Analog Design Essentials. Springer, Boston (2006). ISBN 978-0-387-25746-4CrossRefGoogle Scholar
  13. 13.
    Nagulapalli, R., Hayatleh, K., Barker, S., Zourob, S., Yassine, N., Sridevi, S.: A microwatt low voltage bandgap reference for bio-medical applications. In: 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), pp. 61–65 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. Nagulapalli
    • 1
  • K. Hayatleh
    • 1
  • S. Barker
    • 1
  • S. Zourob
    • 1
  • N. Yassine
    • 1
  • B. Naresh Kumar Reddy
    • 2
    Email author
  1. 1.Oxford Brookes UniversityOxfordUK
  2. 2.Department of Electronics and Computer EngineeringK. L. UniversityGunturIndia

Personalised recommendations