Threshold Voltage Investigation of Recessed Dual-Gate MISHEMT: Simulation Study

  • Preeti Singh
  • Vandana Kumari
  • Manoj Saxena
  • Mridula GuptaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 892)


Simulation based investigation of Recessed Dual-Gate MISHEMT on sapphire substrate has been presented in this work using ATLAS simulation software. Various DC performance parameters such as: threshold voltage shift, drain current and transconductance has been compared for different gate combinations. Threshold voltage variation is observed to be nearly same if gate1 is recessed only or both gates are recessed. Positive shift in threshold voltage has been observed as the depth of gate recess is increased from 0 nm to 8 nm. Enhancement in negative junction depth from 10 nm to 18 nm results in the shift in threshold voltage towards positive i.e. −3.5 V to −2.45 V. This improvement in threshold voltage is due to the reduction in barrier thickness with increase in negative junction depth. DC performance has also been evaluated for the device with high-k gate dielectric such as HfO2 and TiO2 for non-recessed and recessed device. The parameters like gate oxide and work function variation results in the shift of threshold voltage from −3.5 V to 0 V in recessed Dual-Gate MISHEMT.


Dual-Gate MISHEMT TCAD simulation Gate dielectric Recessed gate 



One of the authors, Preeti Singh, would like to thank Ministry of Science and Technology, Department of Science and Technology (SR/WOS-A/ET-143/2017), Government of India and University of Delhi for providing necessary financial assistance during the course of this research work.


  1. 1.
    Egawa, T., Zhao, G.Y., Ishikawa, H., Umeno, H., Jimbo, T.: Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire. IEEE Trans. Electron Devices 48(3), 603–608 (2001)CrossRefGoogle Scholar
  2. 2.
    Ambacher, O., et al.: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999)CrossRefGoogle Scholar
  3. 3.
    Palacios, T., Suh, C.S., Chakraborty, A., Keller, S., DenBaars, S.P., Mishra, U.K.: High-performance E-mode AlGaN/GaN HEMTs. IEEE Electron Device Lett. 27(6), 428–430 (2006)CrossRefGoogle Scholar
  4. 4.
    Wu, J., Lu, W., Paul, K.L.: Normally-OFF AlGaN/GaN MOS-HEMT with a two-step gate recess. In: 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, pp. 594–596. IEEE (2015)Google Scholar
  5. 5.
    Hahn, H., et al.: First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET. Semicond. Sci. Technol. 27(5), 055004 (2012)CrossRefGoogle Scholar
  6. 6.
    Jessen, G.H., et al.: Gate optimization of AlGaN/GaN HEMTs using WSi, Ir, Pd, and Ni Schottky contacts. In: 25th Annual Technical Digest 2003 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, San Diego, CA, USA, pp. 277–279. IEEE (2003)Google Scholar
  7. 7.
    Hilt, O., Knauer, A., Brunner, F., Bahat-Treidel, E., Würfl, J.: Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer. In: 22nd International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hiroshima, Japan, pp. 347–350. IEEE (2010)Google Scholar
  8. 8.
    Gregušová, D., et al.: Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Appl. Phys. Lett. 104(1), 013506 (2014)CrossRefGoogle Scholar
  9. 9.
    Cai, Y., Zhou, Y., Chen, K.J., Lau, K.M.: High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett. 26(7), 435–437 (2005)CrossRefGoogle Scholar
  10. 10.
    Hahn, H., et al.: Threshold voltage engineering in GaN-based HFETs: a systematic study with the threshold voltage reaching more than 2 V. IEEE Trans. Electron Devices 62(2), 538–545 (2015)CrossRefGoogle Scholar
  11. 11.
    Hasegawa, H., Akazawa, M.: Interface models and processing technologies for surface passivation and interface control in III–V semiconductor nanoelectronics. Appl. Surf. Sci. 254(24), 8005–8015 (2008)CrossRefGoogle Scholar
  12. 12.
    Chong, W., et al.: Breakdown voltage and current collapse of F-plasma treated AlGaN/GaN HEMTs. J. Semicond. 35(1), 014008 (2014)CrossRefGoogle Scholar
  13. 13.
    Li, W., et al.: Design and simulation of a novel E-mode GaN MIS-HEMT based on a cascode connection for suppression of electric field under gate and improvement of reliability. J. Semicond. 38(7), 074001 (2017)CrossRefGoogle Scholar
  14. 14.
    Yi, C., Wang, R., Huang, W., Tang, W.C.W., Lau, K.M. Chen, K.J.: Reliability of enhancement-mode AlGaN/GaN HEMTs fabricated by fluorine plasma treatment. In: IEEE International Electron Devices Meeting (IEDM 2007), Washington, DC, USA, pp. 389–392. IEEE (2007)Google Scholar
  15. 15.
    Hahn, H., Lükens, G., Ketteniss, N., Kalisch, H., Vescan, A.: Recessed-gate enhancement-mode AlGaN/GaN heterostructure field-effect transistors on Si with record DC performance. Appl. Phys. Express 4(11), 114102 (2011)CrossRefGoogle Scholar
  16. 16.
    Chan, C.Y., Lee, T.C., Hsu, S.S., Chen, L., Lin, Y.S.: Impacts of gate recess and passivation on AlGaN/GaN high electron mobility transistors. Jpn. J. Appl. Phys. 46(2R), 478–484 (2007)CrossRefGoogle Scholar
  17. 17.
    Kordoš, P., Bernat, J., Marso, M.: Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT. Microelectron. J. 36(3–6), 438–441 (2005)CrossRefGoogle Scholar
  18. 18.
    Gao, T., et al.: Dual-gate AlGaN/GaN MIS-HEMTs using Si3N4 as the gate dielectric. Semicond. Sci. Technol. 30(11), 115010 (2015)CrossRefGoogle Scholar
  19. 19.
    Yang, L., et al.: Improvement of subthreshold characteristic of gate-recessed AlGaN/GaN transistors by using dual-gate structure. IEEE Trans. Electron Devices 64(10), 4057–4064 (2017)CrossRefGoogle Scholar
  20. 20.
    Hwang, I.H., et al.: High-performance E-Mode AlGaN/GaN MIS-HEMT with dual gate insulator employing SiON and HfON. Phys. Status Solidi (A) 215, 1700650 (2018)CrossRefGoogle Scholar
  21. 21.
    Silvaco ATLAS TCAD tool, version 5.24.1.RGoogle Scholar
  22. 22.
    Rzin, M., et al.: Impact of gate-drain spacing on low-frequency noise performance of in situ SiN passivated InAlGaN/GaN MIS-HEMTs. IEEE Trans. Electron Devices 64(7), 2820–2825 (2017)CrossRefGoogle Scholar
  23. 23.
    Russo, S., Di Carlo, A.: Scaling issues for AlGaN/GaN HEMTs: performance optimization via devices geometry modelling (2005). arXiv preprint:

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Preeti Singh
    • 1
  • Vandana Kumari
    • 2
  • Manoj Saxena
    • 3
  • Mridula Gupta
    • 1
    Email author
  1. 1.University of Delhi South CampusNew DelhiIndia
  2. 2.Maharaja Agrasen CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Deen Dayal Upadhyaya CollegeUniversity of DelhiNew DelhiIndia

Personalised recommendations