Fabrication of Molybdenum MEMs Structures Using Dry and Wet Etching

  • Sandeep Singh Chauhan
  • Niharika JEmail author
  • M. M. Joglekar
  • S. K. Manhas
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 892)


This paper presents a novel method to make molybdenum (Mo) MEMS structures by using both wet and dry etching methods complementing each other to do fabrication in less time by using bulk micromachining process. These planar structures can find a wide range of applications which includes pressure sensors, micro-hotplates owing to the property of Mo to be thermally stable at high temperature, and RF switches due to the mechanical stability of Mo. In the present work, the n-type Si substrate is used on which an oxide layer is grown by thermal oxidation and then high-quality Mo thin film of thickness 900 nm is deposited by DC magnetron sputtering. This paper also describes a very effective method to address the problem of stiction during the releasing process of MEMs structures. The Mo film is characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD) and MEMs structures are characterized by field emission scanning electron microscopy (FE-SEM).


DC sputtering Dry etching Molybdenum film MEMs structures Wet etching 



The authors thank to Institute Information Centre (IIC), IIT Roorkee for their support in characterization of deposited thin films.


  1. 1.
    Chandra, S., Bhatt, V., Singh, R., Sharma, P., Pal, P.: MEMS prototyping using RF sputtered films. Indian J. Pure Appl. Phys. 45, 326–331 (2007)Google Scholar
  2. 2.
    Luo, W.-J., Pan, Y.-J., Yang, R.-J.: Transient analysis of electro - osmotic secondary flow induced by dc or ac electric field in a curved rectangular microchannel. J. Micromech. Microeng. 15, 1–11 (2005)CrossRefGoogle Scholar
  3. 3.
    Pires, N.M.M., Dong, T., Hanke, U., Hoivik, N.: Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors (Switzerland) 14(8), 15458–15479 (2014)CrossRefGoogle Scholar
  4. 4.
    Iqbal, A., Mohd-Yasin, F.: Comparison of seven cantilever designs for piezoelectric energy harvester based on Mo/AlN/3C-SiC. In: RSM 2015 Proceedings, pp. 1–4 (2015)Google Scholar
  5. 5.
    Chauhan, S.S., Manhas, S.K., Joglekar, M.M.: Fabrication of cantilever MEMs structure of C-axis grown AlN film for energy harvester application. In: 18th ICIT Conference, Lyon, France, pp. 984–988. IEEE (2018)Google Scholar
  6. 6.
    Singh, R., Kumar, M., Chandra, S.: Growth and characterization of high resistivity C-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications. J. Mater. Sci. 42(12), 4675–4683 (2007)CrossRefGoogle Scholar
  7. 7.
    Mele, L., Santagata, F., Lervolino, E., Sarro, P.M.: A molybdenum MEMS microhotplate for high-temperature operation. Sens. Actuators A Phys. 88, 173–180 (2012)CrossRefGoogle Scholar
  8. 8.
    Sharma, J., Fernando, S., Tan, W.M.: Integration of AlN with molybdenum electrodes and sacrificial amorphous silicon release using XeF 2. J. Micromech. Microeng. 24(3), 35019 (2014)CrossRefGoogle Scholar
  9. 9.
    Rao, L.L.R., Singha, M.K., Subramaniam, K.M., Jampana, N., Asokan, S.: Molybdenum microheaters for MEMS-based gas sensor applications: fabrication, electro-thermo-mechanical and response characterization. IEEE Sens. J. 17(1), 22–29 (2017)CrossRefGoogle Scholar
  10. 10.
    Goldsmith, C., et al.: Performance of molybdenum as a mechanical membrane for RF MEMS switches. In: MTT-S International Microwave Symposium, Boston, USA, pp. 1229–1232. IEEE (2009)Google Scholar
  11. 11.
    Brown, R.B., Ger, M.L., Nguyen, T.: Characterization of molybdenum thin films for micromechanical structures. Micro Electromech. Proc., 77–81 (1990). 3764178Google Scholar
  12. 12.
    Yao, Z.J., Chen, S., Eshelman, S., Denniston, D., Goldsmith, C.: Micromachined low-loss microwave switches. J. Microelectromech. Syst. 8(2), 129–134 (1999)CrossRefGoogle Scholar
  13. 13.
    Park, J.Y., Kim, H., Chung, K.W., Bu, B.U.: Monolithically integrated micromachined RF MEMS capacitive switches. Sens. Actuators A 89, 88–94 (2001)CrossRefGoogle Scholar
  14. 14.
    Patil, G.D., Kolhare, N.R., Bhosale, P., Rokade, A.I.: Cantilever type switch design. Int. J. Res. Eng. Technol. 4(1), 402–406 (2015)CrossRefGoogle Scholar
  15. 15.
    Lee, C., Hsu, W.: Modification on surface roughness by combining dry and wet etching. In: Proceedings of SPIE, vol. 5116, pp. 627–635 (2003)Google Scholar
  16. 16.
    Hwang, D.-H., Lo, Y.-C., Chin, K.: Development of a systematic recipe set for processing SU8-5 photoresist. In: Proceedings of SPIE Device and Process Technologies for MEMS and Microelectronics, vol. 4592, pp. 131–139 (2001)Google Scholar
  17. 17.
    Haluzan, D.T., Klymyshyn, D.M., Achenbach, S., Börner, M., Jaber, N.R.: Reducing pull-in voltage by adjusting gap shape in electrostatically actuated cantilever and fixed-fixed beams. Micromachines 1, 68–81 (2010)CrossRefGoogle Scholar
  18. 18.
    Dementyeva, M.G., Meisner, L.L., Lotkov, A.I., Mironov, Y.P.: X-ray diffraction studies of the molybdenum thin films magnetron-sputtered on the TiNi alloy surface. Fundam. Modif. Process., 182–185 (2014)Google Scholar
  19. 19.
    Håkan, E.G.A., Rosengren, L., Bäcklund, Y.: Fabrication of 45° mirrors together with well-defined v-grooves using wet anisotropic etching of silicon. J. Microelectromech. Syst. 4(4), 213–219 (1995)CrossRefGoogle Scholar
  20. 20.
    Pal, P., Sato, K., Chandra, S.: Fabrication techniques of convex corners in a (1 0 0)-silicon wafer using bulk micromachining: a review. J. Micromech. Microeng. 17(10), R111–R133 (2007)CrossRefGoogle Scholar
  21. 21.
    Pal, P., Singh, S.S.: A simple and robust model to explain convex corner undercutting in wet bulk micromachining. Micro Nano Syst. Lett. 1, 1 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sandeep Singh Chauhan
    • 1
  • Niharika J
    • 1
    Email author
  • M. M. Joglekar
    • 2
  • S. K. Manhas
    • 1
  1. 1.Microelectronics Laboratory, Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Mechanical and Industrial EngineeringIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations