Effect of Boron Addition Methods on Microstructure and Mechanical Properties of a Near-α Titanium Alloy

  • Yingying Liu
  • Lihua ChaiEmail author
  • Xiaozhao Ma
  • Yapeng Cui
  • Ziyong Chen
  • Zhilei Xiang
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)


This work investigated the effect of boron addition methods on microstructure and mechanical properties of a near-α titanium alloy. Ti–6.5Al–2.5Sn–9Zr–0.5Mo–1W–1Nb–0.25Si was used as the matrix, and 0.3 wt% TiB2 and 0.1 wt% B were added, respectively. The results show that the addition of trace boron forms TiB whiskers on the prior β grain boundaries and leads to significant refinement of the microstructure in the based alloy. And, the refining effect of the 0.3 wt% TiB2 and 0.1 wt% B on the base alloy is similar. At room temperature, the strength of the boron-containing alloys has a certain increase, but the elongation drops slightly. Through study on the microstructure of tensile strained specimens, it was found that the increase of tensile strength of the boron-containing alloys is the combination of the base microstructure and the whisker bearing, while the ductility drops significantly is mainly attributed to the cracking of TiB phase.


Titanium alloys TiB whiskers Microstructure Mechanical properties 


  1. 1.
    M. Li, J. Luo, et al., Precision Forging of Titanium Alloy. Science Press (2016)Google Scholar
  2. 2.
    M.R. Winstone, A. Partridge, J.W. Brooks, The contribution of advanced high-temperature materials to future aero-engines. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 215(2), 63 (2001)Google Scholar
  3. 3.
    J. Cai, C. Cao, Alloy design and application expectation of a new generation 600 °C high temperature titanium alloy. J. Aeronaut. Mater. 34(4), 27 (in Chinese)Google Scholar
  4. 4.
    J. Cai, Z. Li, J. Ma, Research and development of 600 °C high temperature titanium alloys for aeroengine. Mater. Rev. (2005)Google Scholar
  5. 5.
    C.J. Boehlert, C.J. Cowen, S. Tamirisakandala et al., In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti–6Al–4V alloy. Scripta Mater. 55(5), 465–468 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Qin, L. Geng, D. Ni, Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle. J. Mater. Sci. 46(14), 4980–4985 (2011)CrossRefGoogle Scholar
  7. 7.
    Z. Zhang, J. Qin, Z. Zhang et al., Microstructure effect on mechanical properties of in situ, synthesized titanium matrix composites reinforced with TiB and La2O3. Mater. Lett. 64(3), 361–363 (2010)CrossRefGoogle Scholar
  8. 8.
    B.J. Choi, I.Y. Kim, Y.Z. Lee et al., Microstructure and friction/wear behavior of (TiB + TiC) particulate-reinforced titanium matrix composites. Wear 318(1–2), 68–77 (2014)CrossRefGoogle Scholar
  9. 9.
    J.S. Kim, K.M. Lee, D.H. Cho et al., Fretting wear characteristics of titanium matrix composites reinforced by titanium boride and titanium carbide particulates. Wear 301(1–2), 562–568 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Gorsse, Y.L. Petitcorps, S. Matar et al., Investigation of the Young’s modulus of TiB needles in situ produced in titanium matrix composite. Mater. Sci. Eng., A 340(1–2), 80–87 (2003)CrossRefGoogle Scholar
  11. 11.
    J.L. Murray, P.K. Liao, K.E. Spear, The B − Ti (Boron-Titanium) system. Bull Alloy Phase Diagr 7(6), 550–555 (1986)CrossRefGoogle Scholar
  12. 12.
    G. Zorn, Glass formation in boron-containing alloys by mechanical alloying*: Zeitschrift für Physikalische Chemie. Zeitschrift Für Physikalische Chemie, 157(Part_1), 203–208 (1988)CrossRefGoogle Scholar
  13. 13.
    J.B. Jergenson. Preparation of liquid metal source structures for use in ion beam evaporation of boron-containing alloys (1986)Google Scholar
  14. 14.
    R. Sarkar, P. Ghosal, K. Muraleedharan et al., Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy. Mater. Sci. Eng., A 528(13–14), 4819–4829 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Zhu, A. Kamiya, T. Yamada et al., Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys. Mater. Sci. Eng. A 339(1–2), 53–62 (2003)CrossRefGoogle Scholar
  16. 16.
    S. Tamirisakandala, R.B. Bhat, J.S. Tiley et al., Grain refinement of cast titanium alloys via trace boron addition. Scripta Mater. 53(12), 1421–1426 (2005)CrossRefGoogle Scholar
  17. 17.
    W.G. Burgers, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1(7), 561–586 (1934)CrossRefGoogle Scholar
  18. 18.
    T.T. Cheng, The mechanism of grain refinement in TiAl alloy by boron addition—an alternative hypothesis. Intermetallics 8(1), 29–37 (2000)CrossRefGoogle Scholar
  19. 19.
    V.K. Chandravanshi, R. Sarkar, S.V. Kamat et al., Effect of boron on microstructure and mechanical properties of thermomechanically processed near alpha titanium alloy Ti-1100. J. Alloy. Compd. 509(18), 5506–5514 (2011)CrossRefGoogle Scholar
  20. 20.
    V.K. Chandravanshi, R. Sarkar, P. Ghosal et al., Effect of Minor Additions of Boron on Microstructure and Mechanical Properties of As-Cast Near α, Titanium Alloy[J]. Metall Mater Trans A 41(4), 936–946 (2010)CrossRefGoogle Scholar
  21. 21.
    I. Sen, S. Tamirisakandala, D.B. Miracle et al., Microstructural effects on the mechanical behavior of B-modified Ti–6Al–4V alloys. Acta Mater. 55(15), 4983–4993 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Gorsse, D.B. Miracle, Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 51(9), 2427–2442 (2003)CrossRefGoogle Scholar
  23. 23.
    W. Lu, Z. Di, X. Zhang et al., Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloy. Compd. 327(1), 248–252 (2001)CrossRefGoogle Scholar
  24. 24.
    F. Ma, T. Wang, P. Liu et al., Mechanical properties and strengthening effects of in situ, (TiB + TiC)/Ti-1100 composite at elevated temperatures. Mater. Sci. Eng. A 654, 352–358 (2016)CrossRefGoogle Scholar
  25. 25.
    V.M. Imayev, R.A. Gaisin, E.R. Gaisina, et al. Microstructure, processing and mechanical properties of a titanium alloy Ti-20Zr-6.5Al-3.3Mo-0.3Si-0.1B. Mater. Sci. Eng. A (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yingying Liu
    • 1
  • Lihua Chai
    • 1
    Email author
  • Xiaozhao Ma
    • 1
  • Yapeng Cui
    • 1
  • Ziyong Chen
    • 1
  • Zhilei Xiang
    • 1
  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations