Effect of Zr Content on the Microstructure, Mechanical Properties, and Corrosion Resistance of Ti–27Nb–xZr Alloys

  • Ying XuEmail author
  • Huanhuan Wang
  • Yanqing Cai
  • Ziyan Wei
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)


In order to improve comprehensive mechanical properties and corrosion resistance of Ti–Nb–Zr alloys, Ti–27Nb–xZr (0–10 wt%) alloys were prepared by powder metallurgy (PM) method. The effect of Zr content on microstructure, mechanical properties, and corrosion resistance was researched. It was observed that the alloys possessed equal-axis β phase and a little acicular α phase. The mechanical property test showed that with the increase of Zr content, the elastic modulus of Ti–27Nb–xZr alloys was reduced and the compressive strength was improved. When the Zr content was 6 wt%, the Ti–27Nb–6Zr alloy had the highest compressive strength of 625 MPa, and the lowest elastic modulus of 50 GPa. Corrosion resistance of the Ti–27Nb–xZr alloys was evaluated by the potentiodynamic polarization curves. The result showed that the Ti–27Nb–6Zr alloy had better corrosion resistance than those of other alloys with different Zr contents, which exhibited a great potential for orthopedic applications.


Titanium alloy Ti–Nb–Zr Powder metallurgy Mechanical properties Corrosion resistance 



This study was financially supported by the Provincial Natural Science Foundation and Key Basic Research Project of Hebei Province (No. C2018209270).


  1. 1.
    M. Niinomi, Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 33(3), 477 (2002)CrossRefGoogle Scholar
  2. 2.
    Y. Yao, X. Li, Y.Y. Wang, W. Zhao, G. Li, Microstructural evolution and mechanical properties of Ti-Zr β titanium alloy after laser surface remelting. J. Alloys. Compd. 583, 43–47 (2014)CrossRefGoogle Scholar
  3. 3.
    F.A. Müller, M.C. Bottino, L. Müller, A.R. Vinicius, In vitro apatite formation on chemically treated (P/M) Ti-13Nb-13Zr. Dent. Mater. 24(1), 50–56 (2008)CrossRefGoogle Scholar
  4. 4.
    L. Wang, W. Lu, J. Qin, F. Zhang, D. Zhang, Influence of cold deformation on martensite transformation and mechanical properties of Ti–Nb–Ta–Zr alloy. J. Alloys. Compd. 469(1–2), 512–518 (2009)CrossRefGoogle Scholar
  5. 5.
    L. Bolzoni, E.M. Ruiz-Navas, E. Gordo, Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy. J. Mech. Behav. Biomed 67, 110 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Okazaki, Y. Ito, K. Kyo, T.: Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mat. Sci. Eng. A 213(1–2), 138–147 (1996)Google Scholar
  7. 7.
    R. Huiskes, H. Weinans, R.B. Van, The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res. 274(274), 124–134 (1992)Google Scholar
  8. 8.
    M. Niinomi, Metallic biomaterials. J. Artif. Organs 11(3), 105 (2008)CrossRefGoogle Scholar
  9. 9.
    Y.L. Zhou, D.M. Luo, Corrosion behavior of Ti-Mo alloys cold rolled and heat treated. J. Alloys. Compd. 509(21), 6267–6272 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Semlitsch, H. Weber, R. Steger, 15 Jahre Erfahrung mit Ti6AI7Nb-Legierung für Gelenkprothesen—Fifteen years of experience with a Ti6AI7Nb alloy for joint replacements. Biomed. Eng. 40(12), 347–355 (1995). OnlineCrossRefGoogle Scholar
  11. 11.
    L.J. Xu, Y.Y. Chen, Z.G. Liu, F.T. Kong, The microstructure and properties of Ti-Mo-Nb alloys for biomedical application. J. Alloys. Compd 453(1–2), 320–324 (2008)CrossRefGoogle Scholar
  12. 12.
    Y. Sasikumar, N. Rajendran, Surface modification and in vitro characterization of Cp-Ti and Ti-5Al-2Nb-1Ta alloy in simulated body fluid. J. Mater. Eng. Perform. 21(10), 2177–2187 (2012)CrossRefGoogle Scholar
  13. 13.
    O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, S. Fox, A comparative study of the mechanical properties of high-strength β-titanium alloys. J. Alloys Compd. 457(1), 296–309 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Göttlicher, M. Rohnke, A. Helth, T. Leichtweiß, T. Gemming, A. Gebert, J. Eckert, J. Janek, Controlled surface modification of Ti-40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation. Acta Biomater. 9(11), 9201–9210 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Terayama, N. Fuyama, Y. Yamashita, I. Ishizaki, H. Kyogoku, Fabrication of Ti-Nb alloys by powder metallurgy process and their shape memory characteristics. J. Alloys Compd. 577(1), S408–S412 (2013)CrossRefGoogle Scholar
  16. 16.
    J.M. Chaves, O. Florêncio, P.S. Silva Jr., P.W.B. Marques, S.G. Schneider, Anelastic relaxation associated to phase transformations and interstitial atoms in the Ti-35Nb-7Zr alloy. J. Alloys Compd. 616, 420–425 (2014)CrossRefGoogle Scholar
  17. 17.
    W. Simka, A. Krzala, M. Maselbas, G. Dercz, J. Szade, A. Winiarski, J. Michalska, Formation of bioactive coatings on Ti-13Nb-13Zr alloy for hard tissue implants. RSC. Adv. 3(28), 11195–11204 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Okazaki, A New Ti-15Zr-4Nb-4Ta alloy for medical applications. Curr. Opin. Solid State Mater. Sci. 5(1), 45–53 (2001)CrossRefGoogle Scholar
  19. 19.
    Y. Zhou, Y. Li, X. Yang, Z. Cui, S. Zhu, Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75-xNb25Zrx (x = 0 – 6) alloys. J. Alloys Compd. 486(1), 628–632 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Guo, A. Chu, H. Wu, C. Cai, X. Qu, Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti-24Nb-4Zr-7.9Sn alloy for biomedical applications. J. Alloys Compd. 597(6), 211–216 (2014)CrossRefGoogle Scholar
  21. 21.
    C.G. Ágreda, M.W.D. Mendes, J.C. Bressiani, A.H.A. Bressiani, Apatite coating on titanium samples obtained by powder metallurgy. Adv. Sci Technol. 86, 28–33 (2013)CrossRefGoogle Scholar
  22. 22.
    G.H. Lv, H. Chen, L. Li, E.W. Niu, H. Pang, B. Zou, S.Z. Yang, Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy. Curr. Appl. Phys. 9(1), 126–130 (2009)CrossRefGoogle Scholar
  23. 23.
    X.H. Min, S. Emura, N. Sekido, T. Nishimura, K. Tsuchiya, K. Tsuzaki, Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy. Mater. Sci. Eng. A 527(10–11), 2693–2701 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ying Xu
    • 1
    Email author
  • Huanhuan Wang
    • 1
  • Yanqing Cai
    • 1
  • Ziyan Wei
    • 1
  1. 1.College of Material Science and EngineeringNorth China University of Science and TechnologyTangshanChina

Personalised recommendations