Hot Deformation Behavior of the As-Cast Mg–10.13Li–2.83Zn–2.78Al–0.13Si Alloy

  • Shouyang Gao
  • Defu LiEmail author
  • Peng Du
  • Shengli Guo
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)


Hot deformation behavior of Mg–10.13Li–2.83Zn–2.78Al–0.13Si alloy was investigated in the temperature range of 150–300 °C and strain rates from 0.001 to 10 s−1 by hot compression testing and a processing map was developed using Dynamic Material Model (DMM). According to the true stress–true strain curves, the flow stress behavior of the alloy was related to the coordinated deformation of α phase and dynamic recrystallization of β phase. The processing map exhibited only one safe domain occurring at 300 °C and 0.001 s−1 and its peak efficiency was 45%. The α phase had become fine and round because of the dissolution and precipitation behavior. But complete dynamic recrystallization occurred only in β phase. The instability region was also identified at the temperatures ranging from 150 to 220 °C and strain rates from 0.1 to 3 s−1. No defects, such as adiabatic shear bands or cracking, were observed in this region. Thus, the optimum thermal deformation parameter of the alloy in this experiment was 300 °C/0.001 s−1.


Mg–Li alloy Hot deformation behavior Dynamic recrystallization Processing map 


  1. 1.
    M. Karami, R. Mahmudi, Hot shear deformation constitutive analysis and processing map of extruded Mg–12Li–1Zn bcc alloy. Mater. Des. 53(1), 534–539 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Becker, G. Fischer, Magnesium—Alloys and Technology (2004)Google Scholar
  3. 3.
    P.I.L. Alloys, Light Alloys: Metallurgy of the Light Metals (Eward Arnold, 1995)Google Scholar
  4. 4.
    O. Sivakesavam, Y.V.R.K. Prasad, Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg–11.5Li–1.5Al alloy. Mater. Sci. Eng. A, 323(1), 270–277 (2002)CrossRefGoogle Scholar
  5. 5.
    R.J. Jackson, P.D. Frost, Properties and Current Applications of Magnesium-Lithium Alloys. NASA SP-5068 (Nasa Special Publication, 1967. 5068)Google Scholar
  6. 6.
    H. Yan, R.S. Chen, E.H. Han, Microstructures and mechanical properties of cold rolled Mg-8Li and Mg-8Li–2Al-2RE alloys. 20(s2), 550–554 (2010)Google Scholar
  7. 7.
    J.H. Jackson et al., Magnesium-lithium base alloys—preparation, fabrication, and general characteristics. JOM 1(2), 149–168 (1949)CrossRefGoogle Scholar
  8. 8.
    H. Chang-Chan, J.Y. Wang, S. Lee, Room temperature aging characteristic of MgLiAlZn alloy. Mater. Trans. 49(11), 2728–2731 (2008)CrossRefGoogle Scholar
  9. 9.
    T.C. Chang et al., Mechanical properties and microstructures of various Mg–Li alloys. Mater. Lett. 60(27), 3272–3276 (2006)CrossRefGoogle Scholar
  10. 10.
    Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot Working Guide: Compendium of Processing Maps (2015)Google Scholar
  11. 11.
    Y.V.R.K. Prasad et al., Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall. Trans. A 15(10), 1883–1892 (1984)CrossRefGoogle Scholar
  12. 12.
    I.N. Sneddon, R. Hill, W.E. Jahsman, Progress in solid mechanics, vol. 4. J. Appl. Mech. 32(2), 478 (1965)CrossRefGoogle Scholar
  13. 13.
    Y.V.R.K. Prasad, Recent advances in the science of mechanical processing. Indian J. Technol. (1990)Google Scholar
  14. 14.
    Karami, Mahmudi, The microstructural, textural, and mechanical properties of extruded and; equal channel angularly pressed Mg-Li-Zn alloys. Metall. Mater. Trans. A 44(8), 3934–3946 (2013)CrossRefGoogle Scholar
  15. 15.
    X. Meng et al., Microstructures and properties of superlight Mg–Li–Al–Zn wrought alloys. J. Alloy. Compd. 486(1–2), 722–725 (2009)CrossRefGoogle Scholar
  16. 16.
    Z. Chen, Z. Li, C. Yu, Hot deformation behavior of an extruded Mg–Li–Zn–RE alloy. Mater. Sci. Eng., A 528(3), 961–966 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Shalbafi, R. Roumina, R. Mahmudi, Hot deformation of the extruded Mg–10Li–1Zn alloy: constitutive analysis and processing maps. J. Alloy. Compd. 696, 1269–1277 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Takuda et al., Effect of strain rate on deformation behaviour of a Mg–8.5Li–1Zn alloy sheet at room temperature. Mater. Sci. Eng. A 271(1–2), 251–256 (1999)CrossRefGoogle Scholar
  19. 19.
    C.W. Yang et al., Tensile mechanical properties and failure behaviors with the ductile-to-brittle transition of the α + β-type Mg–Li–Al–Zn alloy. ScriptaMaterialia 61(12), 1141–1144 (2009)Google Scholar
  20. 20.
    O. Sivakesavam, Y.V.R.K. Prasad, Processing map for hot working of hot rolled Mg-11.5Li-1.5Al alloy. ZeitschriftFürMetallkunde 93(2), 123–127 (2002)CrossRefGoogle Scholar
  21. 21.
    Y.V.R.K. Prasad, K.P. Rao, Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: anisotropy of hot workability. Mater. Sci. Eng., A 487(1–2), 316–327 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.General Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations