Effect of Cu Content on Microstructure and Properties of Al–Mg–Si Alloy

  • Hong-Xiang Li
  • Shengli GuoEmail author
  • Peng Du
  • Sheng-Pu Liu
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)


The effect of Cu content on the microstructure and properties of Al–Mg–Si alloy was studied by optical microscopy scanning electron microscopy, transmission electron microscopy, and tensile test. The state of the heat treatment is directly aged at 165 °C after a solid solution. The results show that with the increase of Cu content, the tensile strength of Al–Mg–Si alloy first increases and then decreases, and the conductivity has no obvious change. When the content of Cu is 0.3%, the tensile strength of Al–Mg–Si alloy is significantly increased to 336 MPa and the electrical conductivity is 49.6% IACS.


Al–Mg–Si alloy Cu content Microstructure and properties 


  1. 1.
    X. Sauvage, E.V. Bobruk, Y. Nasedkina et al., Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys. Acta Mater. 98, 355–366 (2015)CrossRefGoogle Scholar
  2. 2.
    F. Kiessling P. Nefzger, F. Nolasco, Overhead Power Lines: Planning, Design, Construction (Berlin: Springer, 2003)Google Scholar
  3. 3.
    G.E. Totten, D.S. MacKenzie (eds.), Handbook of Aluminium. in Alloy production and Materials Manufacturing, vol. 2 (New York: Marcel Dekker, 2003)Google Scholar
  4. 4.
    J. Hirsch, Aluminium Alloys for Automotive Application: Materials Science Forum (1997)CrossRefGoogle Scholar
  5. 5.
    J.X. Zhang, A.H. Gao, Influence of trace of Cu on microstructure and properties of 6063 aluminum alloy. Mater. Heat Treat. 38(22), 45–47 (2009)Google Scholar
  6. 6.
    H.-X. Gao, X.-Y. Zhang, X. Huang et al., The effect of Zr, Cu elements and rare earth Ce on microstructure and property of the electrical round rod. J. Funct. Mater. 46(3), 3073–3076 (2015)Google Scholar
  7. 7.
    Y.N. Liu, J.H. Chen, M.J. Yin et al., The influences of natural ageing and Cu addition on the age hardeni ng behavior of AlMgSi(Cu) alloys. J. Chinese Electron Microsc. Soc. 29(3), 280–286 (2010)Google Scholar
  8. 8.
    W.F. Miao, D.E. Laughlin, Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022. Metall. Mater. Trans. A 31(2), 361–371 (2000)CrossRefGoogle Scholar
  9. 9.
    X.J. Shang, Q.B. Liu, P. Xu et al., Effects of copper and rare Earth elements on properties of aluminum electrical round bars. Nonferrous Met. Eng. 8(1), 16–19 (2018)Google Scholar
  10. 10.
    X.Y. Zhang, H. Zhang, X.X. Kong et al., Microstructure and properties of Al-0.70Fe-0.24Cu alloy conductor prepared by horizontal continuous casting and subsequent continuous extrusion forming. Trans. Nonferrous Met. Soc. China 25(6), 1763–1769 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Suzuki, T. Kimura, J. Koike et al., Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scripta Mater. 48(8), 997–1002 (2003)CrossRefGoogle Scholar
  12. 12.
    F. Li, X.D. Liu, W.Y. Wang et al., Effect of squeeze casting on microstructure of A356 alloy. Foundry 57(4), 347–349 (2008)Google Scholar
  13. 13.
    X.M. Zhang, L.H. Hao, D.M. Jiang et al., An investigation on tensile fracture of Al-Mg-Si alloys. Mater. Eng. (5), 35–36 (1996)Google Scholar
  14. 14.
    H.F. Liu, N.Z. Sun, X.L. Dai et al., The measurement and researchment of temperature of GP domain in the procedure of age-hardening. Hot Work. Technol. 2, 81–85 (1988)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hong-Xiang Li
    • 1
  • Shengli Guo
    • 1
    Email author
  • Peng Du
    • 1
  • Sheng-Pu Liu
    • 1
  1. 1.General Research Institute for Non-ferrous MetalsBeijingChina

Personalised recommendations