Delay-Constrained Load Balancing in the SDN

  • Ziyi Ma
  • Xiaoqiang DiEmail author
  • Yuming Jiang
  • Huilin Jiang
  • Huamin Yang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 972)


In the low earth orbit (LEO) satellite networks, a single satellite may cover areas with various population quantity, economic conditions and time zones. In this case, networks have time-varying traffic load and may face with unbalanced load distribution. Moreover, software defined networking (SDN) has dynamic monitoring function that can be implemented in the satellite network to observe the real-time status of satellite links and nodes, and quickly update routing tables. However, high link utilization is likely to cause local network congestion, resulting in increased delay. To solve this problem, we propose a load balancing algorithm under the delay constraint. The experimental results show that our proposed scheme can reasonably allocate link bandwidth under the delay requirement and achieve lower end-to-end delay and higher system throughput.


LEO satellite network Load balancing Delay constraint SDN 


  1. 1.
    Rao, Y., Wang, R.-C.: Agent-based load balancing routing for LEO satellite networks. Comput. Netw. 54(17), 3187–3195 (2010)CrossRefGoogle Scholar
  2. 2.
    Open Networking Foundation: Software-defined networking: the new norm for networks. ONF White Pap. 2, 2–6 (2012)Google Scholar
  3. 3.
    Yeganeh, S.H., Ganjali, Y.: Kandoo: a framework for efficient and scalable offloading of control applications. In: The Workshop on Hot Topics in Software Defined Networks, pp. 19–24 (2012)Google Scholar
  4. 4.
    Lee, C.H., Kim, Y.T.: QoS-aware hierarchical token bucket (QHTB) queuing disciplines for QoS-guaranteed DiffServ provisioning with optimized bandwidth utilization and priority-based preemption. In: International Conference on Information NETWORKING, pp. 351–358 (2013)Google Scholar
  5. 5.
    Maxwell, G., Mook, R.V., Oosterhout, M.V., Schroeder, P.B., Spaans, J.: Linux advanced routing and traffic control howto. Acta Medica Scandinavica 145(S280), 1122 (2002)Google Scholar
  6. 6.
    Valenzuela, J.L., Monleon, A., San Esteban, I., Portoles, M.: A hierarchical token bucket algorithm to enhance QoS in IEEE 802.11: proposal, implementation and evaluation. In: Vehicular Technology Conference, VTC 2004-Fall, vol. 4, pp. 2659–2662. IEEE (2004)Google Scholar
  7. 7.
    Ren, S., Feng, Q., Wang, Y., Dou, W.: A service curve of hierarchical token bucket queue discipline on software defined networks based on deterministic network calculus: an analysis and simulation. J. Adv. Comput. Netw. 5(1), (2017)Google Scholar
  8. 8.
    Guck, J.W., Kellerer, W.: Achieving end-to-end real-time quality of service with software defined networking. In: IEEE International Conference on Cloud Networking, pp. 70–76 (2014)Google Scholar
  9. 9.
    Guck, J.W., Bemten, A.V., Kellerer, W.: DetServ: network models for real-time QoS provisioning in SDN-based industrial environments. IEEE Trans. Netw. Serv. Manag. 14(1003), 1017 (2017)Google Scholar
  10. 10.
    Lin, C.R., Chen, Y.J., Wang, L.C.: Handoff delay analysis in SDN-enabled mobile networks: a network calculus approach. In: IEEE Vehicular Technology Conference, pp. 1–5 (2017)Google Scholar
  11. 11.
    Huang, J., He, Y., Duan, Q., Yang, Q., Wang, W.: Admission control with flow aggregation for QoS provisioning in software-defined network. In: Global Communications Conference, pp. 1182–1186 (2014)Google Scholar
  12. 12.
    Taleb, T., Mashimo, D., Jamalipour, A., Hashimoto, K.: SAT04-3: ELB: an explicit load balancing routing protocol for multi-hop NGEO satellite constellations. In: Global Telecommunications Conference, GLOBECOM 2006, pp. 1–5. IEEE (2007)Google Scholar
  13. 13.
    Song, G., Chao, M., Yang, B., Zheng, Y.: TLR: a traffic-lightbased intelligent routing strategy for NGEO satellite ip networks. IEEE Trans. Wirel. Commun. 13(6), 3380–3393 (2014)CrossRefGoogle Scholar
  14. 14.
    Li, X., Tang, F., Chen, L., et al.: A state-aware and load-balanced routing model for LEO satellite networks. In: 2017 IEEE Global Communications Conference, GLOBECOM 2017, pp. 1–6. IEEE (2017)Google Scholar
  15. 15.
    Le Boudec, J.-Y., Thiran, P. (eds.): Network Calculus - A Theory of Deterministic Queuing Systems for the Internet. LNCS, vol. 2050. Springer, Heidelberg (2001). Scholar
  16. 16.
    Fidler, M.: An end-to-end probabilistic network calculus with moment generating functions. In: IEEE International Workshop on Quality of Service, pp. 261–270 (2006)Google Scholar
  17. 17.
    Lara, A., Kolasani, A., Ramamurthy, B.: Network innovation using openflow: a survey. IEEE Commun. Surv. Tutor. 16(1), 493–512 (2014)CrossRefGoogle Scholar
  18. 18.
    Lantz, B., Heller, B., Mckeown, N.: A network in a laptop: rapid prototyping for software-defined networks. In: ACM Workshop on Hot Topics in Networks, HOTNETS 2010, Monterey, CA, USA, pp. 1–6, October 2010Google Scholar
  19. 19.
  20. 20.
    Kaur, S., Kumar, K., Singh, J., Ghumman, N.S.: Round-robin based load balancing in software defined networking. In: 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2136–2139. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ziyi Ma
    • 2
  • Xiaoqiang Di
    • 1
    Email author
  • Yuming Jiang
    • 2
  • Huilin Jiang
    • 2
  • Huamin Yang
    • 2
  1. 1.Changchun University of Science and TechnologyChangchunChina
  2. 2.ChangchunChina

Personalised recommendations