Skip to main content

A Parallel Solving Algorithm on GPU for the Time-Domain Linear System with Diagonal Sparse Matrices

  • Conference paper
  • First Online:
Big Scientific Data Benchmarks, Architecture, and Systems (SDBA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 911))

Included in the following conference series:

Abstract

For the time-domain linear system with diagonal sparse matrices, based on the popular preconditioned generalized minimum residual method (GMRES), we proposed an efficient solving algorithm on the graphics processing unit (GPU), which is called T-GMRES. In the proposed T-GMRES, three are the following novelties: (1) a new sparse storage format BRCSD is presented to alleviate the drawback of the diagonal format (DIA) that a large number of zeros are filled to maintain the diagonal structure when many diagonals are far away from the main diagonal; (2) an efficient sparse matrix-vector multiplication on GPU for BRCSD is proposed; and (3) for assembling the sparse matrix for BRCSD and the vector efficiently on GPU, a new kernel is suggested. The experimental results have validated the high efficiency and good performance of our proposed algorithm.

The research has been supported by the Natural Science Foundation of Zhejiang Province, China under grant number LY17F020021, and the Natural Science Foundation of Jiangsu Province, China under grant number BK20171480, and the Open Project Program of the State Laboratory of Computer Architecture under grant number CARCH201603, and the Qing Lan Project of Nanjing Normal University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin, M., Wang, Y.: Structure-Preserving Algorithm of Partial Differential Equations. Zhejiang Science and Technology Press, Hangzhou (2011)

    Google Scholar 

  2. CUDA C Programming Guide 9.0. http://docs.nvidia.com/cuda/cuda-c-programming-guide

  3. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-oriented processors. In: Proceedings Conference on High Performance Computing Networking, Storage and Analysis (SC 2009), pp. 14–19. ACM, New York (2009)

    Google Scholar 

  4. Saad, Y.: Iterative Methods for Sparse Linear Systems, second version. SIAM, Philadelphia, PA (2003)

    Google Scholar 

  5. Couturier, R., Domas, S.: Sparse systems solving on GPUs with GMRES. J. Supercomput. 59(3), 1504–1516 (2012)

    Article  Google Scholar 

  6. Li, R., Saad, Y.: GPU-accelerated preconditioned iterative linear solvers. J. Supercomput. 63(2), 443–466 (2013)

    Article  Google Scholar 

  7. Yang, B., Liu, H., Chen, Z.: Preconditioned GMRES solver on multiple-GPU architecture. Comput. Math. Appl. 72(4), 1076–1095 (2016)

    Article  MathSciNet  Google Scholar 

  8. Gao, J., Wu, K., Wang, Y., Qi, P., He, G.: GPU-accelerated preconditioned GMRES method for two-dimensional Maxwell’s equations. Int. J. Comput. Math. 94(10), 2122–2144 (2017)

    Article  MathSciNet  Google Scholar 

  9. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-vector multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Symposium Principles and Practice of Parallel Programming (PPoPP 2010), pp. 9–14. ACM, Bangalore (2010)

    Google Scholar 

  10. Yan, S., Li, C., Zhang, Y.: yaSpMV: Yet another SpMV framework on GPUs. In: Proceedings of the 19th ACM SIGPLAN Symposium Principles and Practice of Parallel Programming (PPoPP 2014), pp. 107–118. ACM, New York (2014)

    Google Scholar 

  11. Kreutzer, M., Hager, G., Wellein, G.: A unified sparse matrix data format for efficient general sparse matrix-vector multiply on modern processors with wide simd units. SIAM J. Sci. Comput. 36(5), C401–C423 (2014)

    Article  Google Scholar 

  12. Gao, J., Liang, R., Wang, J.: Research on the conjugate gradient algorithm with a modified incomplete Cholesky preconditioner on GPU. J. Parallel Distr. Comput. 74(2), 2088–2098 (2014)

    Article  Google Scholar 

  13. Filippone, S., Cardellini, V., Barbieri, D.: Sparse matrix-vector multiplication on GPGPUs. ACM Trans. Math. Software 43(4), 30 (2017)

    Article  MathSciNet  Google Scholar 

  14. Gao, J., Wang, Y., Wang, J.: A novel multi-graphics processing unit parallel optimization framework for the sparse matrix-vector multiplication. Concurr. Comput.-Pract. E. 29(5), e3936 (2017)

    Article  Google Scholar 

  15. Gao, J., Wang, Y., Wang, J., Liang, R.: Adaptive optimization modeling of preconditioned conjugate gradient on multi-GPUs. ACM Trans. Parallel Comput. 3(3), 16 (2016)

    Article  Google Scholar 

  16. Sun, X., Zhang, Y., Wang, T.: Optimizing SpMV for diagonal sparse matrices on GPU. In: 2011 International Conference on Parallel Processing, ICPP 2011, pp. 492–501. IEEE, Taipei (2011)

    Google Scholar 

  17. CUBLAS Library 9.0. http://docs.nvidia.com/cuda/cublas

  18. He, G., Gao, J., Wang, J.: Efficient dense matrix-vector multiplication on GPU. Concurr. Comput.-Pract. E., e4705(2018). https://doi.org/10.1002/cpe.4705

    Article  Google Scholar 

  19. Abdelfattah, A., Keyes, D., Ltaief, H.: KBLAS: an optimized library for dense matrix-vector multiplication on GPU accelerators. ACM Trans. Math. Software 42(3), 18 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans. Math. Software 38(1), 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Gao, J., Zhou, Y., He, G., Xia, Y.: A multi-GPU parallel optimization model for the preconditioned conjugate gradient algorithm. Parallel Comput. 63, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  22. Wang, T., Zhao, X., Jiang, J.: Unconditional and optimal \(H^2\)-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions. Adv. Comput. Math. 44(2), 477–503 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaquan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, Y., Gao, J., He, G. (2019). A Parallel Solving Algorithm on GPU for the Time-Domain Linear System with Diagonal Sparse Matrices. In: Ren, R., Zheng, C., Zhan, J. (eds) Big Scientific Data Benchmarks, Architecture, and Systems. SDBA 2018. Communications in Computer and Information Science, vol 911. Springer, Singapore. https://doi.org/10.1007/978-981-13-5910-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5910-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5909-5

  • Online ISBN: 978-981-13-5910-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics