Skip to main content

Soil Fertility Improvement by Symbiotic Rhizobia for Sustainable Agriculture

  • Chapter
  • First Online:
Soil Fertility Management for Sustainable Development

Abstract

Soil is living medium and it acts as a precarious reserve in agriculture and food production. To enhance crop yields for ever-increasing human population, chemical fertilizers are being applied in the soil. But, the haphazard usage of fertilizers, predominantly nitrogenous and phosphorus, headed to considerable contamination of soil, air and water. Moreover, unwarranted consumption of these agrochemicals also cause lethal effects on soil microorganisms and disturbs the soil fertility. Due to current public apprehensions about the side effects of these agrochemicals, understanding plant and rhizospheric microbial interactions is gaining momentum. It is considered to be important to effectively manage level of nitrogen in soil through biological nitrogen fixation (BNF) to maintain agricultural sustainability. The fixed N is directly taken up in the plants and is less vulnerable to volatilization, denitrification and leaching. Thus, mutualistic symbiosis amongst legume plant and nodulating rhizobia plays a key role in ecological environments. Legume-rhizobia symbioses provide approximately 45% of N used in agriculture and contributions of BNF from the symbiotic association accounts for at least 70 million metric tons per year into terrestrial ecosystems. In agricultural systems, about 80% of BNF contributed by symbiotic association made between leguminous plants and species of Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium, Mesorhizobium and Allorhizobium. The populations of these root-nodule forming bacteria can be changed ecologically, agronomically, edaphically and genetically to increase legume production and soil productivity. Moreover, legume-rhizobia symbioses also provide non-polluting and economical ways to augment N2-fixing potential under stress conditions. Scientists have identified numerous symbiotic systems tolerant in harsh situations of salinity, alkalinity, acidity, drought, toxic metals have been recognized and alteration in rhizobial population under stressed environments can be an indicator of soil fertility. Moreover, interactions among rhizobia, plant growth-promoting rhizobacteria (PGPR) and mycorrhiza as well show significant part in increasing soil fertility and crop yields. In this chapter, significance of biological nitrogen fixation in persistent food supply, influence of extreme environments on legume-rhizobia symbiosis as well as interaction of rhizobia with belowground microbial species are discussed. The eco-friendly approach to increase crop production and soil health by inoculation of symbiotic bacteria as biofertilizers is described for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 27 April 2019

    The original version of this chapter was inadvertently published without the sources for Tables 6.1, 6.2 and 6.3.

References

  • Aamir M, Aslam A, Khan MY, Jamshaid MU, Ahmad M, Asghar HN, Zahir ZA (2013) Coinoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agric Biol 1:17–22

    Google Scholar 

  • Abd-Alla MH (1994a) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56

    Article  CAS  Google Scholar 

  • Abd-Alla MH (1994b) Use of organic phosphorus by Rhizobium leguminosarum biovar viciae phosphatases. Biol Fertil Soils 18:216–218

    Article  CAS  Google Scholar 

  • Abd-Alla MH, El-Enany AWE, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2009a) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Bull Environ Contam Toxicol 82:761–766

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2009b) Effect of insecticide-tolerant and plant growth promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotech 12:217–226

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011) Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (Vigna) improves the growth and yield of green gram [Vigna radiata (L.) Wilczek] in insecticide stressed soils. Symbiosis 54:17–27

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012a) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates J Food Agric 24:334–343

    Google Scholar 

  • Ahemad M, Khan MS (2012b) Productivity of green gram in tebuconazole-stressed soil by using a tolerant and plant growth promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol Plant 34:245–254

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012c) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71

    CAS  Google Scholar 

  • Ahmad D, Mehmannavaz R, Damaj M (1997) Isolation and characterization of symbiotic N2-fixing Rhizobium meliloti from soils contaminated with aromatic and chloroaromatic hydrocarbons: PAHs and PCBs. Int Biodeter Biodegr 39:33–43. https://doi.org/10.1016/S0964-8305(96)00065-0

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1- carboxylate-deaminase. Can J Microbiol 57:578–589

    Article  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  Google Scholar 

  • Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH (2012) Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361–372

    Google Scholar 

  • Akkermans ADL (1994) Application of bacteria in soils: problems and pitfalls. FEMS Microbiol Rev 15:185–194

    Article  CAS  Google Scholar 

  • Alexandre A, Oliveira S (2011) Most heat-tolerant rhizobia show high induction of major chaperone genes upon stress. FEMS Microbiol Ecol 75:28–36

    Article  CAS  Google Scholar 

  • Al-Mallah MK, Davey MR, Cocking EC (1989) Formation of nodular structures on rice seedlings by rhizobia. J Expt Bot 40:473–478

    Article  Google Scholar 

  • Andrade G, De Leij FAAM, Lynch JM (1998) Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett Appl Microbiol 26:311–316

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–68

    Article  CAS  Google Scholar 

  • Appelbaum E (2018) The Rhizobium/Bradyrhizobium-legume symbiosis. In: Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, pp 131–158

    Chapter  Google Scholar 

  • Ardourel M, Demont N, Debelle F, Maillet F, de Billy F, Prome JC, Denarie J, Truchet G (1994) Rhizobium meliloti lipo-oligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic development responses. Plant Cell 6:1357–1374

    Article  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  CAS  Google Scholar 

  • Awaya JD, Fox PM, Borthakur D (2005) pyd Genes of Rhizobium sp. strain TAL1145 are required for degradation of 3-hydroxy-4-pyridone, an aromatic intermediate in mimosine metabolism. J Bacteriol 187:4480–4487. https://doi.org/10.1128/JB.187.13.4480-4487.2005

    Article  CAS  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43(5):1774–1781

    Article  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  Google Scholar 

  • Barbosa JA, Silva LP, Teles RC, Esteves GF, Azevedo RB, Ventura MM, de Freitas SM (2007) Crystal structure of the Bowman-Birk inhibitor from Vigna unguiculata seeds in complex with β-Trypsin at 1.55 Å resolution and its structural properties in association with proteinases. Biophysical J 92(5):1638–1650

    Article  CAS  Google Scholar 

  • Barbosa DD, Brito SL, Fernandes PD, Fernandes-Junior PI, Lima LM (2018) Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts? World J Microbiol Biotechnol 34:87. https://doi.org/10.1007/s11274-018-2474-z

    Article  CAS  Google Scholar 

  • Barrios S, Ouattara B, Strobl E (2008) The impact of climatic change on agricultural production: is it different for Africa? Food Policy 33(4):287–298

    Article  Google Scholar 

  • Bender GL, Nayudu M, Le Strange KK, Rolfe BG (1988) The nodDI gene of Rhizobium strain NGR234 is a key determinant in the extension of host range to non-legume Parasponia. Mol Plant Microbe Interact 1:254–256

    Article  Google Scholar 

  • Berck S, Perret X, Quesada-Vincens D, Prome JC, Broughten WJ, Jabbouri S (1999) NolL of Rhizobium sp. NGR234 is required for O-acetyltransferase activity. J Bacteriol 181:957–964

    CAS  Google Scholar 

  • Bernard T, Pocard JA, Perroud B, Le Rudulier D (1986) Variations in the response of salt-stressed Rhizobium strains to betaines. Arch Microbiol 143:359–364

    Article  CAS  Google Scholar 

  • Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510

    Article  CAS  Google Scholar 

  • Betts JH, Herridge DF (1987) Isolation of soybean lines capable of nodulation and nitrogen fixation under high levels of nitrate supply. Crop Sci 27:1156–1161

    Article  Google Scholar 

  • Beynon JL, Beringer JE, Johnston AWB (1980) Plasmids and host range in Rhizobium leguminosarum and Rhizobium phaseoli. J Gen Microbiol 120:421–429

    Google Scholar 

  • Bhagat D, Sharma P, Sirari A, Kumawat KC (2014) Screening of Mesorhizobium spp. for control of Fusarium wilt in chickpea in vitro conditions. Int J Curr Microbiol Appl Sci 3:923–930

    Google Scholar 

  • Birkenhead K, Manian SS, O’Gara F (1988) Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation. J Bacteriol 170:184–189

    Article  CAS  Google Scholar 

  • Biswas J, Ladha J, Dazzo F (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Bockman OC (1997) Fertilizers and biological nitrogen fixation as sources of plant nutrients: perspectives for future agriculture. Plant Soil 194:11–14

    Article  CAS  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141(1-2):1–11

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  Google Scholar 

  • Bolton H Jr, Elliott LF, Turco RF, Kennedy AC (1990) Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant Soil 123:121–124

    Article  Google Scholar 

  • Boncompagni E, Osterås M, Poggi MC, Le Rudulier D (1999) Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol 65:2072–2077

    CAS  Google Scholar 

  • Bourion V, Heulin-Gotty K, Aubert V, Tisseyre P, Chabert-Martinello M, Pervent M, Delaitre C, Vile D, Siol M, Duc G, Brunel B (2017) Coinoculation of a pea core-collection with diverse rhizobial strains shows competitiveness for nodulation and efficiency of nitrogen fixation are distinct traits in the interaction. Front Plant Sci 8:2249

    Article  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431

    Article  CAS  Google Scholar 

  • Brewin NJ (1991) Development of the legume root nodule. Annu Rev Cell Biol 7:191–226

    Article  CAS  Google Scholar 

  • Brewin NJ, Beringer JE, Johnston AWB (1980) Plasmid mediated transfer of host range specificity between two strains of Rhizobium leguminosarum. J Gen Microbiol 120:413–420

    Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    Article  CAS  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Broughten WJ, Perret X (1999) Geneology of legume-Rhizobium symbioses. Curr Opinion Plant Biol 2:305–311

    Article  Google Scholar 

  • Broughten WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  Google Scholar 

  • Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    Article  CAS  Google Scholar 

  • Burns TA, Bishop PE, Israel DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandii and Rhizobium. Plant Soil 62(3):399–412

    Article  Google Scholar 

  • Callaham DA, Torrey JG (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 59:1647–1664

    Article  Google Scholar 

  • Camacho M, Santamaria C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Coinoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47(11):1058–1062

    Article  CAS  Google Scholar 

  • Cao Y, Halane MK, Gassmann W, Stacey G (2017) The role of plant innate immunity in the legume-Rhizobium symbiosis. Annu Rev Plant Biol 68:535–561

    Article  CAS  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985) A supernodulation and nitrate tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40

    Article  CAS  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Castillo M, Flores M, Mavingui P, Martinez-Romero E, Palacios R, Hernandez G (1999) Increase in alfalfa nodulation, nitrogen fixation and plant growth by specific DNA amplification in Sinorhizobium meliloti. Appl Environ Microbiol 65:2716–2722

    CAS  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorguin J, Ba A, Gillis M, De laiudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  CAS  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:128–130

    Article  Google Scholar 

  • Chanway CP, Hynes RK, Nelson LM (1989) Plant growth promoting rhizobacteria: effect on the growth and nitrogen fixation of lentils (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–512

    Article  Google Scholar 

  • Chen C, Zhu H (2013) Are common symbiosis genes required for endophytic rice-rhizobial interactions? Plant Signal Behav 8(9):e25453

    Article  Google Scholar 

  • Chen YS, Shiuan D, Chen SC, Chye SM, Chen YL (2003) Recombinant truncated flagellin of Burkholderia pseudomallei as a molecular probe for diagnosis of melioidosis. Clin Diagn Lab Immunol 10(3):423–425

    CAS  Google Scholar 

  • Chen WM, de Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JP, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58(9):2174–2179

    Article  CAS  Google Scholar 

  • Choudhary SR, Sindhu SS (2015) Suppression of Rhizoctonia solani root rot disease of clusterbean (Cyamopsis tetragonoloba) and plant growth promotion by rhizosphere bacteria. Plant Pathol J 14:48–57

    Article  CAS  Google Scholar 

  • Choudhary D, Sindhu SS (2017) Amelioration of salt stress in chickpea (Cicer arietinum L.) by coinoculation of ACC deaminase containing rhizosphere bacteria with Mesorhizobium strains. Legume Res 40(1):80–86

    Google Scholar 

  • Clawson ML, Carú M, Benson DR (1998) Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl Environ Microbiol 64(9):3539–3543

    CAS  Google Scholar 

  • Clune S, Crossin E, Verghese K (2017) Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod 140:766–783

    Article  CAS  Google Scholar 

  • Cocking EC, Webster G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops: a new look. Agro-Industry Hi-Tech. 21–24

    Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103(5):1355–1365

    Article  CAS  Google Scholar 

  • Corvera A, Prome D, Prome JC, Martinez-Romero E, Romero D (1999) The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor. Mol Plant Microbe Interact 12:236–246

    Article  CAS  Google Scholar 

  • Cregan PB, Keyser HH, Sadowsky MJ (1989) Host plant effect on nodulation and competitiveness of the Bradyrhizobium japonicum serotype strains constituting serocluster 123. Appl Environ Microbiol 55:2532–2536

    CAS  Google Scholar 

  • Crook MB Jr (2013) Modulators of symbiotic outcome in Sinorhizobium meliloti. Brigham Young University

    Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discus 7(4):11191–11205

    Article  Google Scholar 

  • Dadarwal KR, Sindhu SS, Batra R (1985) Ecology of Hup+ Rhizobium strains of cowpea miscellany: native frequency and competence. Arch Microbiol 141:255–259

    Article  Google Scholar 

  • Dahale SK, Prashanthi SK, Krishnaraj PU (2016) Rhizobium mutant deficient in mineral phosphate solubilization activity shows reduced nodulation and plant growth in green gram. Proc Natl Acad Sci India Sect B Biol Sci 86(3):723–734

    Article  CAS  Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes RK, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213

    Article  CAS  Google Scholar 

  • Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401

    Article  Google Scholar 

  • David H, Ian R (2000) Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Res 65:229–248

    Article  Google Scholar 

  • Dazzo FB, Yanni YG (2006) The natural Rhizobium-cereal crop association as an example of plant-bacteria interaction. Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 109–127

    Google Scholar 

  • Debelle F, Maillet F, Vasse J, Rosenberg C, de Billy F, Truchet G, Denarie J, Ausubel FM (1988) Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: Genetic basis of R. meliloti dominance. J Bacteriol 170:5718–5727

    Article  CAS  Google Scholar 

  • Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, Bianco C (2017) Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol 8:2466–2473

    Article  Google Scholar 

  • Delamuta JR, Menna P, Ribeiro RA, Hungria M (2017) Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Syst Appl Microbiol 40(5):254–265

    Article  CAS  Google Scholar 

  • Denarie J, Debelle F, Rosenberg C (1992) Signaling and host range variation in nodulation. Annu Rev Microbiol 46(1):497–531

    Article  CAS  Google Scholar 

  • Denarie J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: Signalling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  CAS  Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–444

    Google Scholar 

  • Devine TE, Kuykendall LD (1996) Host genetic control of symbiosis in soybean (Glycine max L.). Plant Soil 186:173–187

    Article  CAS  Google Scholar 

  • Di Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol 3(3):413–434

    Article  CAS  Google Scholar 

  • Dileep Kumar BS, Berggren I, Maartensson AM (2001) Potential for improving pea production by coinoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil 229:25–34

    Article  Google Scholar 

  • Dillewijn P, Martinez-Abarca F, Toro N (1998) Multicopy vectors carrying the Klebsiella pneumoniae nifA gene do not enhance the nodulation competitiveness of Sinorhizobium meliloti on alfalfa. Mol Plant Microbe Interact 11:839–842

    Article  Google Scholar 

  • Dixon R, Cheng Q, Shen GF, Day A, Day MD (1997) nif genes and expression in chloroplasts: prospects and problems. Plant Soil 194:193–203

    Article  CAS  Google Scholar 

  • Djordjevic MA, Zurkowski W, Shine J, Rolfe BG (1983) Sym plasmid transfer to symbiotic mutants of Rhizobium trifolii, Rhizobium leguminosarum and Rhizobium meliloti. J Bacteriol 156:1035–1045

    CAS  Google Scholar 

  • Djordjevic MA, Innes RW, Wijffelman CA, Schofield PR, Rolfe BG (1986) Nodulation of specific legumes is controlled by several distinct loci in Rhizobium trifolii. Plant Mol Biol 6:389–401

    Article  CAS  Google Scholar 

  • Djordjevic MA, Mohd-Radzman NA, Imin N (2015) Small peptide signals that control nodule number, development and symbiosis. J Expt Bot 66:5171–5181. https://doi.org/10.1007/s11104-015-2445-1

    Article  CAS  Google Scholar 

  • Downie JA (1994) Signalling strategies for nodulation of legumes by rhizobia. Trends Microbiol 2(9):318–324

    Article  CAS  Google Scholar 

  • Dudley ME, Jacob TH, Long SR (1987) Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti. Planta 171:289–301

    Article  CAS  Google Scholar 

  • Duhan JS, Dudeja SS, Khurana AL (1998) Siderophore production in relation to N2 fixation and iron uptake in pigeon pea-Rhizobium symbiosis. Folia Microbiol 43(4):421–426

    Article  CAS  Google Scholar 

  • Eaglesham AR (1989) Nitrate inhibition of root-nodule symbiosis in doubly rooted soybean plants. Crop Sci 29(1):115–119

    Article  Google Scholar 

  • Echeverria M, Sannazzaro AI, Ruiz OA, Menéndez AB (2013) Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity. Plant Soil 364:69–79

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by coinoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil 369:453–465

    Article  CAS  Google Scholar 

  • Elkan GH (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 27–40

    Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth and yield of chickpea. J Plant Nutr 31:157–171

    Article  CAS  Google Scholar 

  • Elsheikh EA (1998) Effects of salt on rhizobia and bradyrhizobia: a review. Annal Appl Biol 132(3):507–524

    Article  Google Scholar 

  • Emerich DW, Ruiz-Argüeso T, Evans HJ (1979) Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J Bacteriol 137(1):153–160

    CAS  Google Scholar 

  • Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry and genetics of the uptake hydrogenase in rhizobia. Annu Rev Microbiol 41:355–361

    Article  Google Scholar 

  • Faucher C, Maillet F, Vasse J, Rosenberg C, van Brussel AN, Truchet G, Denarie J (1988) Rhizobium meliloti host range nodH determines production of an alfalfa-specific extracellular signal. J Bacteriol 170:5489–5499

    Article  CAS  Google Scholar 

  • Faucher C, Camut S, Denarie J, Truchet G (1989) The nodH and nodQ host range genes of Rhizobium meliloti behave as virulence genes in R. leguminosarum bv. viciae and determine changes in the production of plant-specific extracellular signals. Mol Plant Microbe Interact 2:291–300

    Article  Google Scholar 

  • Ferguson L, Lessenger JE (2006) Plant growth regulators. In: Lessenger JE (ed) Agricultural medicine. Springer, New York, pp 156–166

    Chapter  Google Scholar 

  • Fernández LA, Zalba P, Gómez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43(6):805–809

    Article  CAS  Google Scholar 

  • Ferreira PAA, Lopes G, Bomfeti CA, de Oliveira Longatti SM, de Sousa Soares CRF, Guilherme LRG, de Souza Moreira FM (2013) Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. World J Microbiol Biotechnol 29:2055–2066

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Expt Bot 61:3211–3222

    Article  CAS  Google Scholar 

  • Fobert PR, Roy N, Nash JH, Iyer VN (1991) Procedure for obtaining efficient root nodulation of a pea cultivar by a desired Rhizobium strain and preempting nodulation by other strains. Appl Environ Microbiol 57:1590–1594

    CAS  Google Scholar 

  • Fox SL, O’Hara GW, Bräu L (2011) Enhanced nodulation and symbiotic effectiveness of Medicago truncatula when coinoculated with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae WSM419. Plant Soil 348:245

    Article  CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1-2):35–59

    Article  CAS  Google Scholar 

  • Franzini VI, Azcon R, Mendes FL, Aroca R (2013) Different interaction among Glomus and Rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Regul 70:265–273

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 28(43):337–359

    Article  CAS  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    Article  CAS  Google Scholar 

  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120

    Article  CAS  Google Scholar 

  • Fujiata K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141:155–175

    Article  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  CAS  Google Scholar 

  • Gal SW, Choi YJ (2003) Isolation and characterization of salt tolerance rhizobia from Acacia root nodules. Agric Chem Biotechnol 46:58–62

    CAS  Google Scholar 

  • Gamas P, Brault M, Jardinaud MF, Frugier F (2017) Cytokinins in symbiotic nodulation: when, where, what for? Trends Plant Sci 22(9):792–802

    Article  CAS  Google Scholar 

  • Garg FC, Garg RP, Kukreja K, Sindhu SS, Tauro P (1985) Host-dependent expression of uptake hydrogenase in cowpea rhizobia. J Gen Microbiol 131(1):93–96

    CAS  Google Scholar 

  • Ghosh PK, Kumar De T, Maiti TK (2015) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot 2015:1–11

    Article  CAS  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316(5829):1307–1312

    Article  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (1999) Bacteriocin producing native rhizobia of green gram (Vigna radiata) having competitive advantage in nodule occupancy. Microbiol Res 154:43–48

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2000) Pigment diverse mutants of Pseudomonas sp.: Inhibition of fungal growth and stimulation of growth of Cicer arietinum. Biol Plant 43:563–569

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soils 36:391–396

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377

    Article  Google Scholar 

  • Gough C, Vasse J, Galera C, Webster G, Cocking E, Denarie J (1997) Interactions between bacterial diazotrophs and non-legume dicots: Arabdiopsis thaliana as a model plant. Plant Soil 194:123–130

    Article  CAS  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38(6):475–484

    Article  CAS  Google Scholar 

  • Gresshoff PM (2003) Post-genomic insights into plant nodulation symbioses. Genome Biol 4:201. https://doi.org/10.1186/gb-2003-4-1-201

    Article  Google Scholar 

  • Grimes HD, Mount MS (1984) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol Biochem 16:27–30

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Guefrachi I, Rejili M, Mahdhi M, Mars M (2013) Assessing genotypic diversity and symbiotic efficiency of five rhizobial legume interactions under cadmium stress for soil phytoremediation. Int J Phytorem 15:938–951

    Article  CAS  Google Scholar 

  • Gully D, Teulet A, Busset N, Nouwen N, Fardoux J, Rouy Z, Vallenet D, Cruveiller S, Giraud E (2017) Complete genome sequence of Bradyrhizobium sp. ORS285, a photosynthetic strain able to establish Nod factor-dependent or Nod factor-independent symbiosis with Aeschynomene legumes. Genome Announc 5(30):e00421–e00417

    Article  Google Scholar 

  • Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14:764–773

    Article  CAS  Google Scholar 

  • Haggag WM, Abouziena HF, Abd-El-Kreem F, Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm 7(10):882–889

    Google Scholar 

  • Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770

    CAS  Google Scholar 

  • Hanin M, Jabbouri S, Quesada-Vincens D, Freiberg C, Perret X, Prome JC, Broughten WJ, Fallay R (1997) Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host specificity gene. Mol Biol 24:1119–1129

    CAS  Google Scholar 

  • Hanin M, Jabbouri S, Broughten WJ, Fallay R, Quesada-Vincens D (1999) Molecular aspects of host specific nodulation. In: Stacey G, Keen NT (eds) Plant microbe interactions, vol 4. APS Press, St. Paul, pp 1–37

    Google Scholar 

  • Hansen AP, Peoples MB, Gresshoff PM, Atkins CA, Pate JS, Carroll BJ (1989) Symbiotic performance of supernodulating soybean [Glycine max (L.) Merr.] mutants during development on different nitrogen regimes. J Expt Bot 40:715–724

    Article  Google Scholar 

  • Hansena JC, Schillingerb WF, Sullivanb TS, Paulitzc TC (2018) Rhizosphere microbial communities of canola and wheat at six paired field sites. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2018.06.012

    Article  Google Scholar 

  • Hanus FJ, Albrecht SL, Zablotowicz RM, Emerich DW, Russell SA, Evans HJ (1981) Yield and N content of soybean seed as influenced by Rhizobium japonicum inoculants possessing the uptake hydrogenase characteristics. Agron J 73:368–372

    Article  CAS  Google Scholar 

  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404–408. https://doi.org/10.1016/j.pbi.2005.05.016

    Article  CAS  Google Scholar 

  • Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152(1):1–7

    Article  Google Scholar 

  • Hardarson G, Heichel GH, Barnes DK, Vance CP (1982) Rhizobial strain preference of alfalfa populations selected for characteristics associated with N2 fixation. Crop Sci 22:55–58

    Article  Google Scholar 

  • Hardy RWF, Havelka UD (1975) Nitrogen fixation research: a key to world food? Science 188:633–643

    Article  CAS  Google Scholar 

  • Hegazi NA, Vlassak K, Monib M (1979) Effect of amendments, moisture and temperature on acetylene reduction in Nile Delta soil. Plant Soil 51:27–37

    Article  CAS  Google Scholar 

  • Hemissi I, Mabrouk Y, Mejri S, Saidi M, Sifi B (2013) Enhanced defence responses of chickpea plants against Rhizoctonia solani by pre-inoculation with rhizobia. J Phytopathol 161:412–418

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311(1–2):1–8

    Article  CAS  Google Scholar 

  • Holl FB, Chanway CP, Turkington R, Radley RA (1988) Response of crested wheatgrass (Agrepyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, van Brussel AAN, Den Dulk Ras H, van Slogteren GMS, Schilperoort RA (1981) Sym-plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens. Nature 291:351–353

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Snijdewint FGM, Schilperoort RA (1982) Identification of the sym plasmid of Rhizobium leguminosarum strain 1001 and its transfer to and expression in other rhizobia and Agrobacterium tumefaciens. Plasmid 8:73–82

    Article  CAS  Google Scholar 

  • Hungaria M, Neves MCP, Dobreiner J (1989) Relative efficiency, ureide transport and harvest index in soybeans inoculated with isogenic Hup- mutants of Bradyrhizobium japonicum. Biol Fertil Soils 7:325–329

    Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN (2014a) Can catalase and EPS producing rhizobia ameliorate drought in wheat? Int J Agric Biol 16:3–13

    CAS  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN, Mahmood S (2014b) Scrutinizing rhizobia to rescue maize growth under reduced water conditions. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj2013.07.0315

    Article  CAS  Google Scholar 

  • Iqbal MA, Khalid M, Shahzad SM, Ahmad M, Soleman N, Akhtar N (2012) Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik.). Chil J Agric Res 72:104–110

    Article  Google Scholar 

  • Iruthayathas EE, Gunasekaran S, Vlassak K (1983) Effect of combined inoculation of Azospirillum and Rhizobium on nodulation and N2-fixation of winged bean and soybean. Scientia Horti 20(3):231–240

    Article  Google Scholar 

  • Ishizuka J (1992) Trends in biological nitrogen fixation research and application. Plant Soil 141:197–209

    Article  CAS  Google Scholar 

  • Islam MZ, Sattar MA, Ashrafuzzaman M, Berahim Z, Shamsuddoha ATM (2013) Evaluating some salinity tolerant rhizobacterial strains to lentil production under salinity stress. Int J Agric Biol 15:499–504

    Google Scholar 

  • Itzigsohn R, Kapulnik Y, Okon Y, Dovrat A (1993) Physiological and morphological aspects of interaction between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Can J Microbiol 39:610–615

    Article  Google Scholar 

  • Jabbouri S, Fallay R, Telmont F, Kamalapriya P, Burger U, Relic B, Prome JC, Broughten WJ (1995) Involvement of nodS in N-methylation and nodU in 6-O-carbomylation of Rhizobium sp. NGR234 Nod factors. J Biol Chem 270:22968–22973

    Article  CAS  Google Scholar 

  • Jacobson MR, Premakumar R, Bishop PE (1986) Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. J Bacteriol 167:480–486

    Article  CAS  Google Scholar 

  • Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252(1):177–186

    Article  CAS  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Jeuffroy MH, Baranger E, Carrouée B, Chezelles ED, Gosme M, Hénault C (2013) Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas. Biogeosciences 10:1787–1797

    Article  CAS  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152

    Google Scholar 

  • Jangu OP, Sindhu SS (2011) Differential response of inoculation with acetic acid producing Pseudomonas sp. in green gram (Vigna radiata L.) and blck gram (Vigna mungo L.). Microbiol J 1:159–173

    Article  Google Scholar 

  • Kaló P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GED (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789

    Article  CAS  Google Scholar 

  • Kalra N, Suneja P, Mendiratta N, Gupta N (2013) Simulating the impact of climate change and its variability on growth and yield of crops. Clim Chang Environ Sustain 1(1):11–19

    Article  Google Scholar 

  • Karaman MR, Sahin S, Düzdemir O, Kandemir N (2013) Selection of chickpea cultivars with agronomic phosphorus (P) utilization characters as influenced by Rhizobium inoculation. Sci Res Essays 8:676–681

    CAS  Google Scholar 

  • Karasu A, Dogan R (2009) The effect of bacterial inoculation and different nitrogen doses on yield and yield components of some chickpea genotypes (Cicer arietinum L.). Afr J Biotechnol 8(1):59–64

    CAS  Google Scholar 

  • Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Prell J, Skeffington A, Poole PS (2009) Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 191:4002–4014. https://doi.org/10.1128/jb.00165-09

    Article  CAS  Google Scholar 

  • Kassaw T, Jr W, Frugoli J (2015) Multiple autoregulation of nodulation (AON) signals identified through split root analysis of Medicago truncatula sunn and rdn1 mutants. Plants 4(2):209–224

    Article  CAS  Google Scholar 

  • Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant Soil 141:93–118

    Article  CAS  Google Scholar 

  • Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Gilcrest K, Katupitia S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79

    Article  CAS  Google Scholar 

  • Keum YS, Seo JS, Hu YT, Li QX (2006) Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol 71:935–941. https://doi.org/10.1007/s00253-005-0219-z

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Ind J Bot Soc 81:255–263

    Google Scholar 

  • Khanna V, Sharma P (2011) Potential for enhancing lentil (Lens culinaris) productivity by co-inoculation with PSB, plant growth-promoting rhizobacteria and Rhizobium. Indian J Agric Sci 81(10):932–937

    Google Scholar 

  • Khot GG, Tauro P, Dadarwal KR (1996) Rhizobacteria from chickpea (Cicer arietinum L.) rhizosphere effective in wilt control and promote nodulation. Ind J Microbiol 36:217–222

    Google Scholar 

  • Kijne JW, Smith G, Diaz CL, Lugtenberg BJJ (1988) Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips. J Bacteriol 170:2994–3000

    Article  CAS  Google Scholar 

  • Kim YC, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Springer, pp 383–413

    Google Scholar 

  • Kinkle BK, Sadowsky MJ, Schmidt EL, Koskinen WC (1993) Plasmids pJP4 and R68.45 can be transferred between populations of bradyrhizobia in nonsterile soil. Appl Environ Microbiol 59:1762–1766

    CAS  Google Scholar 

  • Knight TJ, Langston-Unkefer PJ (1988) Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science 241:951–954

    Article  CAS  Google Scholar 

  • Kondorosi A, Vincze E, Johnston AWB, Beringer JE (1980) A comparison of three Rhizobium linkage maps. Mol Gen Genet 178:403–408

    Article  CAS  Google Scholar 

  • Kondorosi A, Kondorosi E, Pankhurst CE, Broughton WJ, Banfalvi Z (1982) Mobilization of Rhizobium meliloti megaplasmid carrying nodulation and nitrogen fixation genes in other rhizobia and Agrobacterium. Mol Gen Genet 188:433–439

    Article  CAS  Google Scholar 

  • Krishnan HB, Lewin A, Fallay R, Broughten WJ, Pueppke SG (1992) Differential expression of nodS accounts for the varied abilities of Rhizobium fredii USDA257 and Rhizobium sp. NGR234 to nodulate Leucaena spp. Mol Biol 6:3321–3330

    CAS  Google Scholar 

  • Krishnan HB, Kim KY, Krishnan AH (1999) Expression of a Serratia marcescens chitinase gene in Sinorhizobium fredii USDA191 and Sinorhizobium meliloti RCR2011 impedes soybean and alfalfa nodulation. Mol Plant Microbe Interact 12:748–751

    Article  CAS  Google Scholar 

  • Kucey RM, Hynes MF (1989) Populations of Rhizobium leguminosarum biovars phaseoli and viceae in fields after bean or pea in rotation with nonlegumes. Can J Microbiol 35(6):661–667

    Article  Google Scholar 

  • Kulkarni S, Nautiyal CS (2000) Effects of salt and pH stress on temperature-tolerant Rhizobium sp. NBRI330 nodulating Prosopis juliflora. Curr Microbiol 40:221–226

    Article  CAS  Google Scholar 

  • Kumar G, Ram MR (2014) Phosphate solubilizing rhizobia isolated from Vigna trilobata. Am J Microbiol Res 2:105–109

    Article  Google Scholar 

  • Lahrouni M, Oufdou K, El Khalloufi F, Baz M, Lafuente A, Dary M, Pajuelo E, Oudra B (2013) Physiological and biochemical defense reactions of Vicia faba L.–Rhizobium symbiosis face to chronic exposure to cyanobacterial bloom extract containing microcystins. Environ Sci Pollut Res 20:5405–5415

    Article  CAS  Google Scholar 

  • Larrainzar E, Riely B, Kim SC, Carrasquilla-Garcia N, Yu HJ, Hwang HJ, Oh M, Kim GB, Surendrarao A, Chasman D, Siahpirani AF, Penmetsa RV, Lee GS, Kim N, Roy S, Mun JH, Cook DR (2015) Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between Nod factor and ethylene signals. Plant Physiol 169(1):233–265. https://doi.org/10.1104/pp.15.00350

    Article  CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    Article  CAS  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  CAS  Google Scholar 

  • Lewin A, Cervantes E, Wong CH, Broughton WJ (1990) nodSU, two new nod genes of the broad host-range Rhizobium strain NGR234 encode host specific nodulation of the tropical tree Leucaena leucocephala. Mol Plant Microbe Interact 3:317–326

    Article  CAS  Google Scholar 

  • Li DM, Alexander M (1988) Coinoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108:211–219

    Article  Google Scholar 

  • Li Y, Zhou L, Chen D, Tan X, Lei L, Zhou J (2008) A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytol 180:185–192. https://doi.org/10.1111/j.1469-8137.2008.02562.x

    Article  CAS  Google Scholar 

  • Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P, Holsters M (2005) Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiol 139:1366–1379

    Article  CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    Article  Google Scholar 

  • Lindström K, Kokko-Gonzales P, Terefework Z, Räsänen LA (2006) Differentiation of nitrogen-fixing legume root nodule bacteria (rhizobia). Molecular approaches soil, rhizosphere and plant microorganism analysis, p 236

    Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995a) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85(8):843–847

    Article  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995b) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85(6):695–698

    Article  Google Scholar 

  • Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 69:10–17

    Article  CAS  Google Scholar 

  • Long SR (1989) Rhizobium genetics. Annu Rev Genet 23:483–506

    Article  CAS  Google Scholar 

  • Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898

    Article  CAS  Google Scholar 

  • Loper J, Schroth M (1986) Influence of bacteria sources of indol-3-acetic acid on root elongation of sugar beet. Phytopathol 76:386–389

    Article  CAS  Google Scholar 

  • Lopez-Lara IM, Blok-Tip L, Quinto C, Garcia ML, Bloemberg GV, Lamers GEM, Kafetzopoulos D, Stacey G, Lugtenberg BJJ, Thomas-Oates JE, Spaink HP (1996) nodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation factors. Mol Microbiol 21:397–408

    Article  CAS  Google Scholar 

  • Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX (2009) Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol 32(5):351–361

    Article  CAS  Google Scholar 

  • Lynch JM (1983) Microorganisms and enzymes in the soil. In: Marumoto T, Watanabe I, Satoh K, Kanazawa S (eds) Soil biotechnology, microbiological factors in crop productivity. Blackwell Science Publications, London, p 185

    Google Scholar 

  • Machado RG, de Sá EL, Bruxel M, Giongo A, da Silva Santos N, Nunes AS (2013) Indole acetic acid producing rhizobia promote growth of Tanzania grass (Panicum maximum) and Pensacola grass (Paspalum saurae). Int J Agric Biol 15:827–834

    CAS  Google Scholar 

  • Martinez E, Palacios R, Sanchez F (1987) Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834

    Article  CAS  Google Scholar 

  • Mateos PF, Baker DL, Philip-Hollingsworth S, Sqartini A, Peruffo ADB, Nuti MP, Dazzo F (1995) Direct in situ identification of cellulose microfibrils associated with Rhizobium leguminosarum biovar trifolii attached to the root epidermis of white clover. Can J Microbiol 41:202–207

    Article  CAS  Google Scholar 

  • Mathews A, Carroll BJ (2018) Nitrate inhibition of nodulation in legumes. In: Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, pp 159–180

    Google Scholar 

  • Mavingui P, Flores M, Romero D, Martinez-Romero E, Palacios R (1997) Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nat Biotechnol 15:564–569

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • McIver J, Djordjevic MA, Weinman JJ, Bender GL, Rolfe BG (1989) Extension of host range of Rhizobium leguminosarum bv. trifolii caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules. Mol Plant Microbe Interact 2:97–106

    Article  CAS  Google Scholar 

  • Mendoza A, Leija A, Martinez-Romero E, Hernandez G, Mora J (1995) The enhancement of ammonium assimilation in Rhizobium elti prevents nodulation of Phaseolus vulgaris. Mol Plant Microbe Interact 8:584–592

    Article  CAS  Google Scholar 

  • Mendoza A, Valderrama B, Leija A, Mora J (1998) NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis. Mol Plant Microbe Interact 11:83–90

    Article  CAS  Google Scholar 

  • Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29(4):315–332

    Article  CAS  Google Scholar 

  • Merberg D, Maier RJ (1983) Mutants of Rhizobium japonicum with increased hydrogenase activity. Science 220:1064–1065

    Article  CAS  Google Scholar 

  • Mfilinge A, Mtei K, Ndakidemi P (2014) Effect of Rhizobium inoculation and supplementation with phosphorus and potassium on growth and total leaf chlorophyll (Chl) content of bush bean Phaseolus vulgaris, L. Agri Sci 5:1413–1419

    Google Scholar 

  • Mhadhbi H, Jebara M, Limam F, Aouani ME (2004) Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea–rhizobia symbioses: modulation by salt stress. Plant Physiol Biochem 42:717–722

    Article  CAS  Google Scholar 

  • Miller RH, May S (1991) Legume inoculation: successes and failures. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 123–134

    Chapter  Google Scholar 

  • Miller-Williams M, Loewen PC, Oresnik IJ (2006) Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021. Microbiology 152(7):2049–2059

    Article  CAS  Google Scholar 

  • Miransari M, Smith D (2009) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275

    Article  CAS  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452(1):55–68

    Article  CAS  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009) Coinoculation of Bacillus thuringiensis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761

    Article  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    Article  CAS  Google Scholar 

  • Miwa H, Sun J, Oldroyd GED, Allan Downie J (2006) Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J 48:883–894

    Article  CAS  Google Scholar 

  • Mondal HK, Mehta S, Kaur H, Gera R (2017) Characterization of stress tolerant mungbean rhizobia as PGPR and plant growth promotion under abiotic stress. Indian J Microbiol 44(4):38–42

    Google Scholar 

  • Morel MA, Braña V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production. InCrop Plant 2012. InTech

    Google Scholar 

  • Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237

    Article  CAS  Google Scholar 

  • Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S (2012) Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. Plant J 70:367–376

    Article  CAS  Google Scholar 

  • Mytton LR, Brockwell J, Gibson AH (1984) The potential for breeding an improved legume-Rhizobium symbiosis: assessment of genetic variation. Euphytica 33:401–410

    Article  Google Scholar 

  • Malik DK, Sindhu SS (2008) Transposon derived mutants of Pseudomonas strains altered in indole acetic acid production: effect on nodulation and plant growth in green gram (Vigna radiata). Physiol Mol Biol Plants 14:315–320

    Article  CAS  Google Scholar 

  • Nambiar PT, Ma SW, Iyer VN (1990) Limiting an insect infestation of nitrogen-fixing root nodules of the pigeon pea (Cajanus cajan) by engineering the expression of an entomocidal gene in its root nodules. Appl Environ Microbiol 56(9):2866–2869

    CAS  Google Scholar 

  • Nedumaran S, Abinaya P, Jyosthnaa P, Shraavya B, Rao P, Bantilan C (2015) Grain legumes production, consumption and trade trends in developing countries. ICRISAT Res Progr Mark Inst Polic Work Pap Ser 60:4–7

    Google Scholar 

  • Newbould P (1989) The use of nitrogen fertilizer in agriculture: where do we go practically and ecologically? Plant Soil 115:297–311

    Article  Google Scholar 

  • Nieuwkoop AJ, Banfalvi Z, Deshmane N, Gerhold D, Schell MG, Sirotkin KM, Stacey G (1987) A locus encoding host range is linked to the common nodulation genes of Bradyrhizobium japonicum. J Bacteriol 169:2631–2638

    Article  CAS  Google Scholar 

  • Nishijima F, Evans WR, Vesper SJ (1988) Enhanced nodulation of soybean by Bradyrhizobium in the presence of Pseudomonas fluorescens. Plant Soil 111:149–150

    Article  Google Scholar 

  • Norel F, Elmerich C (1987) Nucleotide sequence and functional analysis of the two nifH copies of Rhizobium ORS571. J Gen Microbiol 133:1563–1576

    CAS  Google Scholar 

  • Nutman PS (1984) Improving nitrogen fixation in legumes by plant breeding: The relevance of host selection experiments in red clover (Trifolium pretense L.) and subterraneum clover (T. subterraneum L.). Plant Soil 82:285–301

    Article  CAS  Google Scholar 

  • Nyoki D, Ndakidemi PA (2014) Effects of phosphorus and Bradyrhizobium japonicum on growth and chlorophyll content of cowpea (Vigna unguiculata (L) Walp). Am J Exp Agric 4:1120–1136

    CAS  Google Scholar 

  • O’Connell KP, Goodman RM, Handelsman J (1996) Engineering the rhizosphere: a expressing a bias. Trends Biotechnol 14:83–86

    Article  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Rev Microbiol 11(4):252

    Article  CAS  Google Scholar 

  • Osborn AM (2006) Horizontal gene transfer and its role in the emergence of new phenotypes. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) SGM sumposium 66: procaryotic diversity, mechanisms and significance. Cambridge University Press, Cambridge, pp 275–292

    Chapter  Google Scholar 

  • Oufdou K, Benidire L, Lyubenova L, Daoui K, Fatemi ZEA, Schröder P (2014) Enzymes of the glutathioneascorbate cycle in leaves and roots of rhizobia inoculated faba bean plants (Vicia faba L.) under salinity stress. Eur J Soil Biol 60:98–103

    Article  CAS  Google Scholar 

  • Papworth A, Maslin M, Randalls S (2015) Is climate change the greatest threat to global health? Geogr J 181:413–422

    Article  Google Scholar 

  • Parke D, Rivelli M, Ornston LN (1985) Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J Bacteriol 163:417–422

    CAS  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202. https://doi.org/10.1016/j.jhazmat.2014.05.051

    Article  CAS  Google Scholar 

  • Patriarca EJ, Tate R, Ioccarino M (2002) Key role of NH4 + metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 66:203–222. https://doi.org/10.1128/mmbr.66.2.203-222.2002

    Article  CAS  Google Scholar 

  • Pau AS (1991) Improvement of Rhizobium inoculants by mutation, genetic engineering and formulation. Biotechnol Adv 9:173–184

    Article  Google Scholar 

  • Peoples MB, Herridge DF (1990) Nitrogen fixation by legumes in tropical and subtropical agriculture. In: Advances in agronomy, vol 44. Academic, San Diego, pp 155–223

    Google Scholar 

  • Peoples MB, Boyer EW, Goulding KW, Heffer P, Ochwoh VA, van Lauwe B, Wood S, Yagi K, van Cleemput O (2004) Pathways of nitrogen loss and their impacts on human health and the environment. Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Mosier AR, Sayers JR, Freney JR. SCOPE 65. Island Press, Washington, DC, 53–69

    Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJ, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1-3):1–7

    Article  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64(1):180–201

    Article  CAS  Google Scholar 

  • Pinto FGS, Hungaria M, Mercante FM (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biol Biochem 39:1851–1864

    Article  CAS  Google Scholar 

  • Pladys D, Dmitrijevic L, Rigaud J (1991) Localization of a protease in protoplast preparations in infected cells of French bean nodules. Plant Physiol 97:1174–1180

    Article  CAS  Google Scholar 

  • Plazinski J, Ridge RW, McKay IA, Djordjevic MA (1994) The nod ABC genes of Rhizobium leguminosarum biovar trifolii confer root-hair curling ability to a diverse range of soil bacteria and the ability to induce novel root swellings on beans. Aus J Plant Physiol 21:311–325

    CAS  Google Scholar 

  • Podile AR (1995) Seed bacterization with Bacillus subtilis AF1 enhances seedling emergence, growth and nodulation of pigeonpea. Indian J Microbiol 35:199–204

    Google Scholar 

  • Polcyn W, Luciński R (2003) Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiol Lett 226(2):331–337

    Article  CAS  Google Scholar 

  • Poonthrigpun S, Pattaragulwanit K, Paengthai S, Kriangkripipat T, Juntongjin K, Thaniyavarn S, Petsom A, Pinphanichakarn P (2006) Novel intermediates of acenaphthylene degradation by Rhizobium sp. strain CU-A1: evidence for naphthalene-1,8- dicarboxylic acid metabolism. Appl Environ Microbiol 72:6034–6039. https://doi.org/10.1128/AEM.00897-06

    Article  CAS  Google Scholar 

  • Prabha C, Maheshwari DK, Bajpai VK (2013) Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L. Pharmacogn Mag 9:S57–S65

    Article  CAS  Google Scholar 

  • Pracht JE, Nickell CD, Harper JE, Bullock DG (1994) Agronomic evaluation of non-nodulating and hypernodulating mutants of soybean. Crop Sci 34:738–740

    Article  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 247–260

    Google Scholar 

  • Probanza A, Lucas J, Acero N, Mañero FG (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. Plant Soil 182:59–66

    Article  CAS  Google Scholar 

  • Putnoky P, Kondorosi A (1986) Two gene clusters of Rhizobium meliloti code for early essential nodulation functions and a third influences nodulation efficiency. J Bacteriol 167:881–887

    Article  CAS  Google Scholar 

  • Quain MD, Makgopa ME, Márquez-García B, Comadira G, Fernandez-Garcia N, Olmos E, Schnaubelt D, Kunert KJ, Foyer CH (2014) Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnol J 12:903–913. https://doi.org/10.1111/pbi.12193

    Article  CAS  Google Scholar 

  • Quain MD, Makgopa ME, Cooper JW, Kunert KJ, Foyer CH (2015) Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. Phytochemistry 112:179–187. https://doi.org/10.1016/j.phytochem.2014.12.027

    Article  CAS  Google Scholar 

  • Quesada-Vincens D, Fallay R, Nassim T, Viprey V, Burger U, Prome JC, Broughten WJ, Jabbouri S (1997) Rhizobium sp. NGR234 NodZ protein is a fucosyltransferase. J Bacteriol 179:5087–5093

    Article  CAS  Google Scholar 

  • Quinto C, de la Vega H, Flores M, Leemans J, Cevallos MA, Pardo MA, Azpiroz R, de Lourdes GM, Calva E, Palacois R (1985) Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc Natl Acad Sci U S A 82:1170–1174

    Article  CAS  Google Scholar 

  • Quispel A (1988) Bacteria-plant interactions in symbiotic nitrogen fixation. Physiol Plant 74:783–790. https://doi.org/10.1111/j.1399-3054.1988.tb02052.x

    Article  CAS  Google Scholar 

  • Rahmani H, Saleh-Rastin N, Khavazi K, Asgharzadeh A, Fewer D, Kiani S, Lindstrom K (2009) Selection of thermotolerant bradyrhizobial strains for nodulation of soybean (Glycine max L.) in semi-arid regions of Iran. World J Microbiol Biotechnol 25:591–600

    Article  Google Scholar 

  • Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550

    Article  CAS  Google Scholar 

  • Rajwar A, Sahgal M, Johri BN (2013) Legume-rhizobia symbiosis and interactions in agroecosystems. In: Arora NK (ed) Plant microbe symbiosis-fundamentals and advances. Springer, New Delhi, pp 233–265

    Chapter  Google Scholar 

  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69:789–815

    Article  CAS  Google Scholar 

  • Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids–a new class of phytohormones. Curr Sci 82:1239–1245

    Google Scholar 

  • Raverkar KP, Konde BK (1988) Effect of Rhizobium and Azospirillum lipoferum inoculation on the nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil 106(2):249–252

    Article  CAS  Google Scholar 

  • Ravikumar R (2012) Growth effects of Rhizobium inoculation in some legume plants. Intern J Curr Sci 1:1–6

    Google Scholar 

  • Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Change 2:410–416

    Article  CAS  Google Scholar 

  • Reckling M, Hecker JM, Bergkvist G, Watson CA, Zander P, Schläfke N, Stoddard FL, Eory V, Topp CF, Maire J, Bachinger J (2016) A cropping system assessment framework–evaluating effects of introducing legumes into crop rotations. Eur J Agron 76:186–197

    Article  Google Scholar 

  • Rehman N, Ali M, Ahmad MZ, Liang G, Zhao J (2018) Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microbiol Pathol 114:420–430

    Article  CAS  Google Scholar 

  • Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the rootknot nematode Meloidogyne incognita on tomato. J Plant Dis Protect 115:108–113

    Article  Google Scholar 

  • Relic B, Talmont F, Kopcinska J, Golinowsky W, Prome JC, Broughten WJ (1993) Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptillium atropurpureum. Mol Plant Microbe Interact 6:764–774

    Article  CAS  Google Scholar 

  • Relic B, Perret X, Estrada-Garcia J, Kopcinska J, Golinowsky W, Krishnan HB, Pueppke SG, Broughten WJ (1994) Nod-factors of Rhizobium are a key to legume door. Mol Microbiol 13:171–178

    Article  CAS  Google Scholar 

  • Remans R, Croonenborghs A, Torres-Gutierrez R, Michiels J, Vanderleyden J (2007) Effects of plant growth promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant nutrition. Eur J Plant Pathol 119:341–351

    Article  CAS  Google Scholar 

  • Remans R, Ramaekers L, Schalkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toskano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Article  CAS  Google Scholar 

  • Roberts IN, Caputo C, Criado MV, Funk C (2012) Senescence-associated proteases in plants. Physiol Plant 145:130–139. https://doi.org/10.1111/j.1399-3054.2012.01574.x

    Article  CAS  Google Scholar 

  • Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J, Prome JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–1143

    Article  CAS  Google Scholar 

  • Rochester IJ (2007) Nutrient uptake and export from an Australian cotton field. Nutr Cycl Agroecosyst 77(3):213–223

    Article  CAS  Google Scholar 

  • Rogel MA, Hernandez-Lucas I, Kuykendall D, Balkwill DL, Martinez-Romero E (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268

    Article  CAS  Google Scholar 

  • Rolfe BG, Bender GL (1991) Evolving a Rhizobium for non-legume nodulation. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 779–780

    Google Scholar 

  • Romdhane SB, Trabelsi M, Aouani ME, de Lajudie P, Mhamdi R (2009) The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biol Biochem 41:2568–2572

    Article  CAS  Google Scholar 

  • Ronson CW, Bosworth A, Genova M, Gudbrandsen S, Hankinson T, Kwaitowski R, Ratcliffe H, Robie C, Sweeney P, Szeto W, Williams M, Zablotowicz R (1990) Field release of genetically engineered Rhizobium meliloti and Bradyrhizobium japonicum strains. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 397–403

    Chapter  Google Scholar 

  • Roth LE, Stacey G (1989a) Bacterium release into host cells of nitrogen-fixing nodules: the symbiosome membrane comes from three sources. Eur J Cell Biol 49:13–23

    CAS  Google Scholar 

  • Roth LE, Stacey G (1989b) Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains. Eur J Cell Biol 49:24–32

    CAS  Google Scholar 

  • Russelle MP, Schepers JS, Raun WR (2008) Biological dinitrogen fixation in agriculture. Agronomy 49:281–359

    CAS  Google Scholar 

  • Sabry SRS, Saleh SA, Batchelor CA, Davey MR (1997) In: Xanfu V, Kennedy IR, Tinagwei C (eds) Biological nitrogen fixation, novel association with nonleguminous crops. Qungdao Ocean University Press, China, p 59

    Google Scholar 

  • Sadowsky MJ, Cregan PB, Gottfert M, Sharma A, Gerhold D, Rodriquez-Quinones F, Keyser HH, Hennecke H, Stacey G (1991) The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc Natl Acad Sci U S A 88:637–641

    Article  CAS  Google Scholar 

  • Sadowsky MJ, Kosslak RM, Madrzak CJ, Golinska B, Cregan PB (1995) Restriction of nodulation by Bradyrhizobium japonicum is mediated by factors present in the root of Glycine max. Appl Environ Microbiol 61:832–836

    CAS  Google Scholar 

  • Sahasrabudhe MM (2011) Screening of rhizobia for indole acetic acid production. Ann Biol Res 2(4):460–468

    CAS  Google Scholar 

  • Saıdi S, Chebil S, Gtari M, Mhamdi R (2013) Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J Microbiol Biotechnol 29:1099–1106

    Article  CAS  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560. https://doi.org/10.1038/s41598-018-21921-w

    Article  CAS  Google Scholar 

  • Saini P, Khanna V (2012) Evaluation of native rhizobacteria as promoters of plant growth for increased yield in lentil (Lens culinaris). Rec Res Sci Technol 4(4):5–9

    CAS  Google Scholar 

  • Saini I, Sindhu SS, Dadarwal KR (1996) Uptake hydrogenase, nitrate Respiration, ex planta nitrogenase expression and symbiotic effectivity of Sesbania rhizobia. Indian J Microbiol 36:93–97

    Google Scholar 

  • Sanjuan J, Olivares J (1989) Implication of nifA in regulation of genes located on a Rhizobium meliloti cryptic plasmid that affect nodulation efficiency. J Bacteriol 171:4154–4161

    Article  CAS  Google Scholar 

  • Sanjuan J, Olivares J (1991a) Multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhances Rhizobium meliloti nodulation competitiveness on alfalfa. Mol Plant Microbe Interact 4:365–369

    Article  CAS  Google Scholar 

  • Sanjuan J, Olivares J (1991b) NifA-NtrA regulatory system activates transcription of nfe, a gene locus involved in nodulation competitiveness of Rhizobium meliloti. Arch Microbiol 155:543–548

    Article  CAS  Google Scholar 

  • Sassi-Aydi S, Aydi S, Abdelly C (2012) Inoculation with the native Rhizobium gallicum 8a3 improves osmotic stress tolerance in common bean drought-sensitive cultivar. Acta Agric Scand Sect B Soil Plant Sci 62:179–187

    CAS  Google Scholar 

  • Sato T, Yashima H, Ohtake N, Sueyoshi K, Akao S, Ohyama T (1999) Possible involvement of photosynthetic supply in changes of nodule characteristics of hypernodulating soybeans. Soil Sci Plant Nutr 45:187–196

    Article  Google Scholar 

  • Saur I, Oakes M, Djordjevic MA, Imin N (2011) Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytol 190:865–874

    Article  CAS  Google Scholar 

  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179

    Article  CAS  Google Scholar 

  • Schlindwein G, Vargas LK, Lisboa BB, Azambuja AC, Granada CE, Gabiatti NC, Prates F, Stumpf R (2008) Influence of rhizobial inoculation on seedling vigor and germination of lettuce. Ciencia Rural 38:658–664

    Article  Google Scholar 

  • Schmidt JE, Weese DJ, Lau JA (2017) Long-term agricultural management does not alter the evolution of a soybean–Rhizobium mutualism. Ecol Appl 27(8):2487–2496

    Article  Google Scholar 

  • Schofield PR, Ridge RW, Rolfe BG, Shine J, Watson JM (1984) Host-specific nodulation is encloded on a 14 kb fragment in Rhizobium trifolii. Plant Mol Biol 3:3–11

    Article  CAS  Google Scholar 

  • Schwedock J, Long SR (1992) Rhizobium meliloti genes involved in sulfate activation - The two copies of nod PQ and a new locus, saa. Genetics 132:899–909

    CAS  Google Scholar 

  • Schwenke GD, Herridge DF, Scheer C, Rowlings DW, Haigh BM, McMullen KG (2015) Soil N2O emissions under N2-fixing legumes and N-fertilised canola: a reappraisal of emissions factor calculations. Agric Ecosyst Environ 202:232–242

    Article  CAS  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Senbayram M, Wenthe C, Lingner A, Isselstein J, Steinmann H, Kaya C, Köbke S (2016) Legume-based mixed intercropping systems may lower agricultural born N2O emissions. Energy Sustain Soc 6:2

    Article  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378. https://doi.org/10.1080/0735-260291044278

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean. Lett Appl Microbiol 42:155–159

    Article  CAS  Google Scholar 

  • Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum I.). J Microbiol Biotechnol 17(8):1300

    CAS  Google Scholar 

  • Shahzad SM, Khalid A, Arif MS, Riaz M, Ashraf M, Iqbal Z, Yasmeen T (2014) Coinoculation integrated with P-enriched compost improved nodulation and growth of chickpea (Cicer arietinum L.) under irrigated and rainfed farming systems. Biol Fertil Soils 50:1–12

    Article  CAS  Google Scholar 

  • Shantharam S, Mattoo AK (1997) Enhancing biological nitrogen fixation: an appraisal of current and alternative technologies for N input into plants. Plant Soil 194:205–216

    Article  CAS  Google Scholar 

  • Sharma R, Sindhu S, Sindhu SS (2018a) Bioinoculation of mustard (Brassica juncea L.) with beneficial rhizobacteria: a sustainable alternative to improve crop growth. Intern J Curr Microbiol Appl Sci 7(5):1375–1386

    Article  Google Scholar 

  • Sharma R, Sindhu S, Sindhu SS (2018b) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150

    Article  Google Scholar 

  • Shiri-Janagard M, Raei Y, Gasemi-Golezani K, Aliasgarzard N (2012) Influence of Bradyrhizobium japonicum and phosphate solubilizing bacteria on soybean yield at different levels of nitrogen and phosphorus. Int J Agron Plant Prod 3(11):544–449

    Google Scholar 

  • Sindhu SS, Dadarwal KR (1986) Ex planta nitorgenase induction and uptake hydrogenase in Rhizobium sp. (cowpea miscellany). Soil Biol Biochem 18(3):291–295

    Article  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (1988) Effect of temperature on nitrogenase and hydrogenase activity in cowpea miscellany hosts. Indian J Microbiol 28(3):178–183

    Google Scholar 

  • Sindhu SS, Dadarwal KR (1992) Symbiotic effectivity of cowpea miscellany Rhizobium mutants having increased hydrogenase activity. Indian J Microbiol 32:411–416

    Google Scholar 

  • Sindhu SS, Dadarwal KR (1993) Broadening of host range infectivity in cowpea miscellany Rhizobium by protoplast fusion. Indian J Expt Biol 31:521–528

    Google Scholar 

  • Sindhu SS, Dadarwal KR (1995a) Hydrogen uptake-measurement of photosynthate limitation in nodules of cowpea miscellany hosts. Microbiol Res 150:213–217

    Article  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (1995b) Molecular biology of nodule development and nitrogen fixation in Rhizobium-legume symbiosis. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition in higher plants. Associated Publishing Company, New Delhi, pp 57–129

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in legume-Rhizobium symbiosis. Indian J Microbiol 40(4):211–246

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2001a) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156(4):353–358

    Article  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001b) Genetic manipulation of rhizobia to improve nodulation and nitrogen fixation in legumes. In: Yadav AK, Motsara MR, Ray Choudhary S (eds) Recent advances in biofertilizer technology. Society for Promotion and Utilization of Resources and Technology, New Delhi, pp 1–97

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2001c) Symbiotic effectiveness of spontaneous antibiotic-resistant mutants of Rhizobium sp. Cicer nodulating chickpea (Cicer arietinum). Microbiol Res 155:325–329. http://www.urbanfischer.de/journals/microbiolres

    Article  CAS  Google Scholar 

  • Sindhu SS, Lakshminarayana K (1982) Survival and competitive ability of ammonia excreting and non-ammonia excreting Azotobacter chroococcum strains in sterile soil. Plant Soil 69:79–84

    Article  Google Scholar 

  • Sindhu SS, Lakshminarayana K, Singh D (1994) Expression of hydrogenase activity in Azotobacter chroococcum and its possible role in crop productivity. Indian J Expt Biol 32:423–426

    CAS  Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999a) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soils 29:62–68

    Article  CAS  Google Scholar 

  • Sindhu SS, Mor S, Dadarwal KR (1999b) Cell surface polysaccharides of Rhizobium and nodule development on legume roots: recent advances. In: Gakhar SK, Mishra SN (eds) Recent trends in developmental biology. Himalaya Publishing House, New Delhi, pp 204–240

    Google Scholar 

  • Sindhu SS, Gupta SK, Suneja S, Dadarwal KR (2002a) Enhancement of green gram nodulation and plant growth by Bacillus species. Biol Plant 45:117–120

    Article  Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002b) Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Appl Soil Ecol 19:57–64

    Article  Google Scholar 

  • Sindhu SS, Sharma HR, Dadarwal KR (2003) Competition among Bradyrhizobium strains for nodulation of green gram (Vigna radiata): use of dark-nodule strain. Folia Microbiol 48(1):83–90

    Article  CAS  Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2014) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiol biogeochem. Springer, Berlin/Heidelberg, pp 175–198

    Chapter  Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016) Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Defence Life Sci J 1:135–148

    Article  Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Dahiya A, Khandelwal A (2017) Belowground microbial crosstalk and rhizosphere Biology. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 695–752

    Google Scholar 

  • Sindhu SS, Khandelwal A, Phour M, Sehrawat A (2018) Bioherbicidal potential of rhizosphere microorganisms for ecofriendly weed management. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 331–376

    Chapter  Google Scholar 

  • Singh G, Sekhon H, Sharma P (2011) Effect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.). Arch Agron Soil Sci 57:715–726

    Article  Google Scholar 

  • Sitrit Y, Barak Z, Kapulnik Y, Oppenheim AB, Chet I (1993) Expression of Serratia marcescens chitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol Plant Microbe Interact 6:293–298

    Article  CAS  Google Scholar 

  • Sloger C, van Berkum P, Dutta SK (1992) Approaches for enhancing nitrogen fixation in cereal crops. Biological nitrogen fixation associated with rice production. In: Dutta SK, Sloger C (eds), pp 229–234

    Google Scholar 

  • Smit G, Kijne JW, Lugtenberg BJJ (1987) Involvement of both cellulose fibrils and Ca2+ dependent adhesion in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 169:4294–4301

    Article  CAS  Google Scholar 

  • Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308:1789–1791

    Article  CAS  Google Scholar 

  • Smith SR, Giller KE (1992) Effective Rhizobium leguminosarum biovar trifolii present in five soils contaminated with heavy metals from long-term applications of sewage sludge or metal mine spoil. Soil Biol Biochem 24(8):781–788

    Article  CAS  Google Scholar 

  • So RB, Ladha JK, Young JP (1994) Photosynthetic symbionts of Aeschynomene spp. forms a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. Int J Syst Evol Microbiol 44(3):392–403

    CAS  Google Scholar 

  • Soedarjo M, Borthakur D (1998) Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol Biochem 30:1605–1613. https://doi.org/10.1016/S0038-0717(97)00180-6

    Article  CAS  Google Scholar 

  • Soedarjo M, Hemscheidt TK, Borthakur D (1995) Mimosine, a toxin present in leguminous trees (Leucaena spp.), induces a mimosine-degrading enzyme activity in some strains of Rhizobium. Appl Environ Microbiol 60:4268–4272

    Google Scholar 

  • Solano BR, Maicas JB, FJG M (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: Strategies and techniques to promote plant growth. Wiley, Weinheim, pp 41–52

    Chapter  Google Scholar 

  • Somasegaran P, Bohlool BB (1990) Single strain versus multistrain inoculation: Effect of soil mineral N availability on rhizobial strain effectiveness and competition for nodulation on chickpea, soybean and dry bean. Plant Soil 170:351–358

    Google Scholar 

  • Soto MJ, Zorzano A, Mercado-Blanco J, Lepek V, Olivares J, Toro N (1993) Nucleotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes nfe. J Mol Biol 229:570–579

    Article  CAS  Google Scholar 

  • Sougoufara B, Diem HG, Dommergues YR (1989) Response of field grown Casuarina equisetifolia to inoculation with Frankia strain ORS021001 entraped in alginate beads. Plant Soil 118:133–137

    Article  Google Scholar 

  • Soussana J-F, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4(3):334–350

    Article  CAS  Google Scholar 

  • Souza V, Eguiarte L, Avila G, Cappello R, Gallardo C, Montoya J, Pinero D (1994) Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultivated bean plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos. Appl Environ Microbiol 60:1260–1268

    CAS  Google Scholar 

  • Spaink HP (1996) Regulation of plant morphogenesis by lipo-chitinoligosaccharides. Crit Rev Plant Sci 15:559–582

    CAS  Google Scholar 

  • Spaink HP, Okker RJH, Wijffelman CA, Tak T, Roo LG, Pees E, van Brussel AAN, Lugtenberg BJJ (1989) Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. J Bacteriol 171:4045–4053

    Article  CAS  Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms: pure and applied aspects. Chapman & Hall, London

    Book  Google Scholar 

  • Srinivasan M, Petersen DJ, Holl FB (1997) Nodulation of Phaseolus vulgaris by Rhizobium etli is enhanced in the presence of Bacillus. Can J Microbiol 43:1–8

    Article  CAS  Google Scholar 

  • Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ, Chun JY, Forsberg S, Carlson RW (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 176:620–633

    Article  CAS  Google Scholar 

  • Stajkovic O, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-Vukcevic J (2011) Improvement of common bean growth by coinoculation with Rhizobium and plant growth-promoting bacteria. Rom Biotechnol Lett 16:5919–5926

    Google Scholar 

  • Stevenson FJ (1982) Origin and distribution of nitrogen in soil. In: Stevenson FJ (ed) Nitrogen in agricultural soils, agronomy No. 22. American Society of Agronomy, Madison, pp 1–42

    Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Ann Rev Phytopathol 43:1–36

    Article  CAS  Google Scholar 

  • Sturtevant DB, Taller BJ (1989) Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 89:1247–1252

    Article  CAS  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966

    Article  CAS  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 92:8985–8989

    Article  CAS  Google Scholar 

  • Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki KI, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, Abe M (2004) Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45(7):914–922

    Article  CAS  Google Scholar 

  • Sy A, Giraud E, Samba R, Gillis M, Dreyfus B (2001) Nodulation of certain legumes of the genus Crotalaria by the new species Methylobacterium. Can J Microbiol 47(6):503–508

    Article  CAS  Google Scholar 

  • Szeto W, Kwiatkowski R, Cannon FC, Ronson CW (1990) The enhancement of symbiotic nitrogen fixation in Bradyrhizobium japonicum. In: Abstracts of fifth international symposium on the molecular genetics of plant-microbe interactions, Interlaken, Switzerland, p 152

    Google Scholar 

  • Tairo EV, Ndakidemi PA (2013) Bradyrhizobium japonicum inoculation and phosphorus supplementation on growth and chlorophyll accumulation in soybean (Glycine max L.). Am J Plant Sci 4:2281–2289

    Article  CAS  Google Scholar 

  • Talano MA, Cejas RB, González PS, Agostini E (2013) Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean. Plant Physiol Biochem 63:8–14

    Article  CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Ali A (2012) Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. Afri J Biotechnol 11(84):15012–15019

    CAS  Google Scholar 

  • Tate RL (1995) Soil microbiology (symbiotic nitrogen fixation). Wiley, New York

    Google Scholar 

  • Tchan YT, Kennedy IR (1989) Possible nitrogen-fixing root nodules induced in non-legumes. Agric Sci 2:57–59

    Google Scholar 

  • Tchebotar V, Kang U, Asis C Jr, Akao S (1998) The use of GUS-reporter gene to study the effect of Azospirillum-Rhizobium coinoculation on nodulation of white clover. Biol Fertil Soils 27:349–352

    Article  CAS  Google Scholar 

  • Tejera NA, Soussi M, Lluch C (2006) Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ Exp Bot 58:17–24

    Article  CAS  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57(1):19–28

    CAS  Google Scholar 

  • Timmers AC, Auriac MC, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628

    CAS  Google Scholar 

  • Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho KI, Hashiguchi M, Akashi R, Hirsch A, Arima S (2010) Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signal Behav 5(4):440–443

    Article  CAS  Google Scholar 

  • Trinick MJ, Hadobas PA (1995) Formation of nodular structures on the non-legumes Brassica napus, B. campestris, B. juncea and Arabdiopsis thaliana with Bradyrhizobium and Rhizobium isolated from Parasponia spp. or legumes grown in tropical soils. Plant Soil 172:207–219

    Article  CAS  Google Scholar 

  • Triplett EW (1988) Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24. Proc Natl Acad Sci U S A 85:3810–3814

    Article  CAS  Google Scholar 

  • Triplett EW (1990) Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased nodulation competitiveness. Appl Environ Microbiol 56:98–103

    CAS  Google Scholar 

  • Truchet G, Rosenberg C, Vasse J, Julliot JS, Camut S, Denarie J (1984) Transfer of Rhizobium meliloti sym genes into Agrobacterium tumefaciens: host specific nodulation by a typical infection. J Bacteriol 157:134–142

    CAS  Google Scholar 

  • Tu C, Teng Y, Luo Y, Li X, Sun X, Li Z, Liu W, Christie P (2011) Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. J Hazard Mater 186:1438–1444. https://doi.org/10.1016/j.jhazmat.2010.12.008

    Article  CAS  Google Scholar 

  • Turner JT, Backman PA (1991) Factors relating to peanut yield increased following Bacillus subtilis seed treatment. Plant Dis 75:347–353

    Article  Google Scholar 

  • Uma C, Sivagurunathan P, Sangeetha D (2013) Performance of bradyrhizobial isolates under drought conditions. Int J Curr Microbiol App Sci 2:228–232

    Google Scholar 

  • Urban JE, Davis L, Brown SJ (1986) Rhizobium trifolii 0403 is capable of growth in the absence of combined nitrogen. Appl Environ Microbiol 52(5):1060–1067

    CAS  Google Scholar 

  • Uribe AL, Winham DM, Wharton CM (2012) Community supported agriculture membership in Arizona. An exploratory study of food and sustainability behaviours. Appetite 59(2):431–436

    Article  Google Scholar 

  • van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fertil Soils 10(2):127–133

    Article  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    Google Scholar 

  • van Wyk SG, Du Plessis M, Cullis C, Kunert KJ, Vorster BJ (2014) Cysteine protease and cystatin expression and activity during soybean nodule development and senescence. BMC Plant Biol 14:294–307. https://doi.org/10.1186/s12870-014-0294-3

    Article  CAS  Google Scholar 

  • van Zeijl A, Op den Camp RH, Deinum EE, Charnikhova T, Franssen H, Op den Camp HJ, Bouwmeester H, Kohlen W, Bisseling T, Geurts R (2015) Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol Plant 8:1213–1226

    Article  CAS  Google Scholar 

  • Valverde A, Araceli B, Tiziana F, Rivas R, Encarna R, Claudio V, Emilio R, Manual C, Jose-Mariano C (2006) Differential effects of inoculation with Pseudomonas jessenii PS06 and Mesorhizobium ciceri C-212 strain on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    Article  CAS  Google Scholar 

  • Vande Velde W, Guerra JC, De Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720. https://doi.org/10.1104/pp.106.078691

    Article  CAS  Google Scholar 

  • Vardhini BV, Ram Rao SS (1999) Effect of brassionosteriods on nodulation and nitrogenase activity in groundnut (Arachis hypogaea L.). Plant Growth Regul 28(3):165–167

    Article  CAS  Google Scholar 

  • Vargas LK, Lisboa BB, Schlindwein G, Granada CE, Giongo A, Beneduzi A, Passaglia LMP (2009) Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande do Sul state. R Bras Ci Solo 33:1227–1235

    Article  Google Scholar 

  • Varin S, Lemauviel-Lavenant S, Bernard-Cliquet J, Diquelou S, Padraic T, Mischaelson-Yeates T (2009) Functional plasticity of Trifolium repens L. in response to sulphur and nitrogen availability. Plant Soil 317:189–200. https://doi.org/10.1007/s11104-008-9800-4

    Article  CAS  Google Scholar 

  • Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306

    Article  CAS  Google Scholar 

  • Velázquez E, Martínez-Romero E, Rodríguez-Navarro DM, Trujillo ME, Daza A, Mateos PE, MartínezMolina E, van Berkum P (2001) Characterization of rhizobial isolates of Phaseolus vulgaris by staircase electrophoresis of low-molecular weight RNA. Appl Environ Microbiol 67:1008–1010

    Article  Google Scholar 

  • Venkateshwaran M, Volkening JD, Sussman MR, Ané JM (2013) Symbiosis and the social network of higher plants. Curr Opin Plant Biol 16(1):118–127

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37

    Article  CAS  Google Scholar 

  • Vidor C, Miller RH (1980) Relative saprophytic competence of Rhizobium japonicum strains in soils as determined by the quantitative fluorescent antibody (FA) technique. Soil Biol Biochem 12(5):483–487

    Article  Google Scholar 

  • Vineusa P, Léon-Barrios M, Silva C, Willems A, JabaroLorenzo A, Pérez-Galdona R, Werner D, MartínezRomero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    Article  CAS  Google Scholar 

  • Vlassak KM, Vanderleyden J, Franco A (1996) Competition and persistence of Rhizobium tropici and R. etli in tropical soil during successive bean (Phaseolus vulgaris L.) cultures. Biol Fertil Soils 21:61–66

    Article  Google Scholar 

  • Vriezen JAC, de Bruijn FJ, Nusslein K (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen and temperature. Appl Environ Microbiol 73:3451–3459

    Article  CAS  Google Scholar 

  • Waelkens F, Voets T, Vlassak K, Vanderleyden J, van Rhizn P (1995) The nodS gene of Rhizobium tropici CIAT899 is necessary for nodulation of Phaseolus vulgaris and Leucaena leucocephala. Mol Plant Microbe Interact 8:147–154

    Article  CAS  Google Scholar 

  • Walpola BC, Yoon M-H (2013) Isolation and characterization of phosphate solubilizing bacteria and their coinoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res 7(3):266–275

    CAS  Google Scholar 

  • Wang TL, Wood EA, Brewin NJ (1982) Growth regulators and nodulation in peas. The cytokinin content of a wild type and a Ti plasmid containing strain of R. leguminosarum. Planta 155:350–355

    Article  CAS  Google Scholar 

  • Wang ET, Rogel A, Santos AG, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999) Rhizobium etli bv mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS (2013) Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bull Environ Contam Toxicol 91:117–124

    Article  CAS  Google Scholar 

  • Wani SP, Rupela OP, Lee KK (1995) Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant Soil 174:29–49

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Coinoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  CAS  Google Scholar 

  • Webster G, Davey MR, Cocking EC (1995) Parasponia with rhizobia: a neglected non-legume nitrogen-fixing symbiosis. AgBiotech News Info 7:119N–124N

    Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor CA, O’Callaghan KJ, Kothari SL, Davey MR (1997) Interactions of rhizobia with rice and wheat. Plant Soil 194:115–122

    Article  CAS  Google Scholar 

  • Werner D (2005) Production and biological nitrogen fixation of tropical legumes. In: Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Dordrecht, pp 1–13

    Book  Google Scholar 

  • Williams MK, Beynon JL, Ronson CW, Cannon FC (1990) In: Abstracts of fifth international symposium on the molecular genetics of plant-microbe interactions. Interlaken, Switzerland, p 152

    Google Scholar 

  • Wilson KJ, Peoples MB, Jefferson RA (1995) New techniques for studying competition by rhizobia and for assessing nitrogen fixation in the field. Plant Soil 174:241–253

    Article  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178:161–169

    Article  CAS  Google Scholar 

  • Woomer P, Singleton PW, Bohlool BB (1988) Ecological indicators of native rhizobia in tropical soils. Appl Environ Microbiol 54(5):1112–1116

    CAS  Google Scholar 

  • Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Franssen H, Kulikova O, Niebel A, Bisseling T (2014) Fate map of Medicago truncatula root nodules. Development 141:3517–3528

    Article  CAS  Google Scholar 

  • Yadav A, Gaur I, Goel N, Mitra J, Saleem B, Goswami S, Paul PK, Upadhyaya KC (2015) Rhizospheric microbes are excellent plant growth promoters. Indian J Natur Sci 5(30):6584–6595

    Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2008) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak J Biol Sci PJBS 11(15):1935–1939

    Article  CAS  Google Scholar 

  • Yamato M, Nakayama Y, Yokoyama T, Ueno O, Akao S (1997) Nodulation of Rhizobium fredii USDA192 containing Rhizobium leguminosarum bv. trifolii ANU843 nod genes on homologous host soybean and heterologous host clover. Soil Sci Plant Nutr 43:51–61

    Article  Google Scholar 

  • Yang L, Tang R, Zhu J, Liu H, Mueller-Roeber B, Xia H, Zhang H (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66(4):329–343

    Article  CAS  Google Scholar 

  • Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume–rhizobia symbiosis. Proc Natl Acad Sci 107(43):18735–18740

    Article  CAS  Google Scholar 

  • Yasmeen T, Hameed S, Tariq M, Ali S (2012) Significance of arbuscular mycorrhizal and bacterial symbionts in a tripartite association with Vigna radiate. Acta Physiol Plant 34:1519–1528

    Article  CAS  Google Scholar 

  • Young JPW, Johnston AWB (1989) The evolution of specificity in the legume-Rhizobium symbiosis. Trends Ecol Evol 4:341–349

    Article  CAS  Google Scholar 

  • Yu X, Liu X, Zhu TH, Liu GH, Mao C (2012) Coinoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Euro J Soil Biol 50:112–117

    Article  CAS  Google Scholar 

  • Zafar-ul-Hye M, Ahmad M, Shahzad SM (2013) Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86

    CAS  Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    CAS  Google Scholar 

  • Zhang XP, Karsisto M, Harper R, Lindstrom K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean {Glycine max (L.) Merr.} nodulation and nitrogen fixation at suboptimal root zone temperatures. Annals Bot 77:453–459

    Article  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sindhu, S.S., Sharma, R., Sindhu, S., Sehrawat, A. (2019). Soil Fertility Improvement by Symbiotic Rhizobia for Sustainable Agriculture. In: Panpatte, D., Jhala, Y. (eds) Soil Fertility Management for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-5904-0_7

Download citation

Publish with us

Policies and ethics