Skip to main content

Mucosa-Dependent, Stretch-Sensitive Spontaneous Activity in Seminal Vesicle

  • Chapter
  • First Online:
Smooth Muscle Spontaneous Activity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1124))

Abstract

Seminal vesicles (SVs), a pair of male accessory glands, contract upon sympathetic nerve excitation during ejaculation while developing spontaneous phasic constrictions in the inter-ejaculatory storage phase. Recently, the fundamental role of the mucosa in generating spontaneous activity in SV of the guinea pig has been revealed. Stretching the mucosa-intact but not mucosa-denuded SV smooth muscle evokes spontaneous phasic contractions arising from action potential firing triggered by electrical slow waves and associated Ca2+ flashes. These spontaneous events primarily depend on sarco-endoplasmic reticulum (SR/ER) Ca2+ handling linked with the opening of Ca2+-activated chloride channels (CaCCs) resulting in the generation of slow waves. Slow waves in mucosa-intact SV smooth muscle are abolished upon blockade of gap junctions, suggesting that seminal smooth muscle cells are driven by cells distributed in the mucosa. In the SV mucosal preparations dissected free from the smooth muscle layer, a population of cells located just beneath the epithelium develop spontaneous Ca2+ transients relying on SR/ER Ca2+ handling. In the lamina propria of the SV mucosa, vimentin-immunoreactive interstitial cells including platelet-derived growth factor receptor α (PDGFRα)-immunoreactive cells are distributed, while known pacemaker cells in other smooth muscle tissues, e.g. c-Kit-positive interstitial cells or α-smooth muscle actin-positive atypical smooth muscle cells, are absent. The spontaneously-active subepithelial cells appear to drive spontaneous activity in SV smooth muscle either by sending depolarizing signals or by releasing humoral substances. Interstitial cells in the lamina propria may act as intermediaries of signal transmission from the subepithelial cells to the smooth muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aumüller G, Riva A. Morphology and functions of the human seminal vesicle. Andrologia. 1992;24:183–96. https://doi.org/10.1111/j.1439-0272.1992.tb02636.x.

    Article  PubMed  Google Scholar 

  2. Al-Zuhair A, Gosling JA, Dixon JS. Observation on the structure and autonomic innervation of the guinea-pig seminal vesicle and ductus deferens. J Anat. 1975;120:81–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Clement P, Giuliano F. Physiology and pharmacology of ejaculation. Basic Clin Pharmacol Toxicol. 2016;119:18–25. https://doi.org/10.1111/bcpt.12546.

    Article  CAS  PubMed  Google Scholar 

  4. Capogrosso P, Serino A, Ventimiglia E, Boeri L, Dehò F, Damiano R, et al. Effects of silodosin on sexual function—realistic picture from the everyday clinical practice. Andrology. 2015;3:1076–81. https://doi.org/10.1111/andr.12095.

    Article  CAS  PubMed  Google Scholar 

  5. Hisasue S, Furuya R, Itoh N, Kobayashi K, Furuya S, Tsukamoto T. Ejaculatory disorder caused by alpha-1 adrenoceptor antagonists is not retrograde ejaculation but a loss of seminal emission. Int J Urol. 2006;13:1311–6. https://doi.org/10.1111/j.1442-2042.2006.01535.x.

    Article  CAS  PubMed  Google Scholar 

  6. Hayashi T, Takeya M, Nakamura K, Matsuoka K. Effects of silodosin and tamsulosin on the seminal vesicle contractile response. LUTS. 2016;8:55–61. https://doi.org/10.1111/luts.12072.

    Article  CAS  PubMed  Google Scholar 

  7. Waddell JA. The pharmacology of the seminal vesicles. J Pharmacol Exp Ther. 1916;9:113–20.

    CAS  Google Scholar 

  8. Takeya M, Hashitani H, Hayashi T, Higashi R, Nakamura KI, Takano M. Role of mucosa in generating spontaneous activity in the guinea pig seminal vesicle. J Physiol. 2017;595:4803–21. https://doi.org/10.1113/JP273872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonzales GF. Functional structure and ultrastructure of seminal vesicles. Arch Androl. 1989;22:1–13.

    Article  CAS  Google Scholar 

  10. Price D, William-Ashman HG. The accessory reproductive glands of mammals. In: Young WC, editor. Sex and internal secretions, vol. 1. 3rd ed. Baltimore, MD: The Williams and Wilkins Co.; 1961. p. 366–448.

    Google Scholar 

  11. Melin P. In vivo recording of contractile activity of male accessory genital organs in rabbits. Acta Physiol Scand. 1970;79:109–13. https://doi.org/10.1111/j.1748-1716.1970.tb04706.x.

    Article  CAS  PubMed  Google Scholar 

  12. Veneziale CM, Brown AL, Prendergast FG. Histology and fine structure of guinea pig seminal vesicle. Mayo Clin Proc. 1974;49:309–13.

    CAS  PubMed  Google Scholar 

  13. Tse MKW, Wong YC. Structural study of the involution of the seminal vesicles of the guinea pig following orchiectomy. Acta Anat. 1980;108:68–78. https://doi.org/10.1159/000145283.

    Article  CAS  PubMed  Google Scholar 

  14. Hib J, Ponzio R, Vilar O. In vivo recording of contractile activity of pelvic urethra and seminal vesicle in rats. Effects of electrical stimulations and neurohypophysial hormones. Andrologia. 1983;15:480–5. https://doi.org/10.1111/j.1439-0272.1983.tb00173.x.

    Article  CAS  PubMed  Google Scholar 

  15. Hib J, Ponzio R, Vilar O. Effects of autonomic drugs on contractions of rat seminal vesicles in vivo. J Reprod Fertil. 1984;70:197–202. https://doi.org/10.1530/jrf.0.0700197.

    Article  CAS  PubMed  Google Scholar 

  16. Turek PJ, Aslam K, Younes AK, Nguyen HT. Observation of seminal vesicle dynamics in an in vivo rat model. J Urol. 1998;159:1731–4. https://doi.org/10.1097/00005392-199805000-00102.

    Article  CAS  PubMed  Google Scholar 

  17. Ohkawa H. Further evidences for the cholinergic and adrenergic mechanisms in the isolated hypogastric nerve-seminal vesicle preparation of the guinea-pig. Bull Yamaguchi Med Sch. 1973;20:73–84.

    CAS  Google Scholar 

  18. Ohkawa H. Evidence for adrenergic transmission in the circular smooth muscle of the guinea-pig seminal vesicle. Tohoku J Exp Med. 1981;134:141–58. https://doi.org/10.1620/tjem.134.141.

    Article  CAS  PubMed  Google Scholar 

  19. Birowo P, Ückert S, Kedia GT, Sonnenberg JE, Thon WF, Rahardjo D, et al. Characterization of the effects of various drugs likely to affect smooth muscle tension on isolated human seminal vesicle tissue. Urology. 2010;75:974–8. https://doi.org/10.1016/j.urology.2009.09.034.

    Article  PubMed  Google Scholar 

  20. Narita H. The study of sperm transport through the human genital tract—pharmacological responses in vitro of the human genital tract. Jpn J Urol. 1983;74:1734–48. https://doi.org/10.5980/jpnjurol1928.74.10_1734.

    Article  CAS  Google Scholar 

  21. Ohkawa H. Excitatory junction potentials recorded from the circular smooth muscles of the guinea-pig seminal vesicle. Tohoku J Exp Med. 1982;136:89–102. https://doi.org/10.1620/tjem.136.89.

    Article  CAS  PubMed  Google Scholar 

  22. Kubota Y, Hashitani H, Fukuta H, Sasaki S, Kohri K, Suzuki H. Mechanisms of excitatory transmission in circular smooth muscles of the guinea pig seminal vesicle. J Urol. 2003;169:390–5. https://doi.org/10.1016/S0022-5347(05)64134-1.

    Article  CAS  PubMed  Google Scholar 

  23. Shigemasa Y, Lam M, Mitsui R, Hashitani H. Voltage dependence of slow wave frequency in the guinea pig prostate. J Urol. 2014;192:1286–92. https://doi.org/10.1016/j.juro.2014.03.034.

    Article  PubMed  Google Scholar 

  24. Hashitani H, van Helden DF, Suzuki H. Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol. 1996;118:1627–32. https://doi.org/10.1111/j.1476-5381.1996.tb15584.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashitani H, Edwards FR. Spontaneous and neurally activated depolarizations in smooth muscle cells of the guinea-pig urethra. J Physiol. 1999;514:459–70. https://doi.org/10.1111/j.1469-7793.1999.459ae.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sadraei H, Beech DJ. Ionic currents and inhibitory effects of glibenclamide in seminal vesicle smooth muscle cells. Br J Pharmacol. 1995;115:1447–54. https://doi.org/10.1111/j.1476-5381.1995.tb16636.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lang RJ, Hashitani H, Tonta MA, Parkington HC, Suzuki H. Spontaneous electrical and Ca2+ signals in typical and atypical smooth muscle cells and interstitial cell of Cajal-like cells of mouse renal pelvis. J Physiol. 2007;583:1049–68. https://doi.org/10.1113/jphysiol.2007.137034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashitani H, Takano H, Fujita K, Mitsui R, Suzuki H. Functional properties of suburothelial microvessels in the rat bladder. J Urol. 2011;185:2382–91. https://doi.org/10.1016/j.juro.2011.02.046.

    Article  PubMed  Google Scholar 

  29. Hashitani H, Mitsui R, Shimizu Y, Higashi R, Nakamura K. Functional and morphological properties of pericytes in suburothelial venules of the mouse bladder. Br J Pharmacol. 2012;167:1723–36. https://doi.org/10.1111/j.1476-5381.2012.02125.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94:859–907. https://doi.org/10.1152/physrev.00037.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sergeant GP, Hollywood MA, McCloskey KD, Thornbury KD, McHale NG. Specialised pacemaking cells in the rabbit urethra. J Physiol. 2000;526:359–66. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00359.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levine N, Rinaldo JE, Schultz SG. Active chloride secretion by in vitro guinea-pig seminal vesicle and its possible relation to vesicular function in vivo. J Physiol. 1975;246:197–211. https://doi.org/10.1113/jphysiol.1975.sp010886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao SB, Cheung KH, O WS, Tang F. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion. Biol Reprod. 2014;91:31, 1–6. https://doi.org/10.1095/biolreprod.113.116848.

    Article  CAS  Google Scholar 

  34. Jang Y, Oh U. Anoctamin 1 in secretory epithelia. Cell Calcium. 2014;55:355–61. https://doi.org/10.1016/j.ceca.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  35. van Helden DF, Imtiaz MS. Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol. 2003;548:271–96. https://doi.org/10.1111/j.1469-7793.2003.00271.x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sui G, Fry CH, Montgomery B, Roberts M, Wu R, Wu C. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions. Am J Physiol Ren Physiol. 2014;306:F286–98. https://doi.org/10.1152/ajprenal.00291.2013.

    Article  CAS  Google Scholar 

  37. Gonzales GF. Function of seminal vesicles and their role on male fertility. Asian J Androl. 2001;3:251–8.

    CAS  PubMed  Google Scholar 

  38. Lang RJ, Davidson ME, Exintaris B. Pyeloureteral motility and ureteral peristalsis: essential role of sensory nerves and endogenous prostaglandins. Exp Physiol. 2002;87:129–46. https://doi.org/10.1113/eph8702290.

    Article  CAS  PubMed  Google Scholar 

  39. Hashitani H, Yanai Y, Shirasawa N, Soji T, Tomita A, Kohri K, Suzuki H. Interaction between spontaneous and neutrally mediated regulation of smooth muscle tone in the rabbit corpus cavernosum. J Physiol. 2005;569:723–35. https://doi.org/10.1113/jphysiol.2005.099309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Won KJ, Sanders KM, Ward SM. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci U S A. 2005;102:14913–8. https://doi.org/10.1073/pnas.0503628102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robertson SA. Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res. 2005;322:43–52. https://doi.org/10.1007/s00441-005-1127-3.

    Article  PubMed  Google Scholar 

  42. Bromfield JJ. Seminal fluid and reproduction: much more than previously thought. J Assist Reprod Genet. 2014;31:627–36. https://doi.org/10.1007/s10815-014-0243-y.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Crawford G, Ray A, Gudi A, Shah A, Homburg R. The role of seminal plasma for improved outcomes during in vitro fertilization treatment: review of the literature and meta-analysis. Hum Reprod Update. 2015;21:275–84. https://doi.org/10.1093/humupd/dmu052.

    Article  PubMed  Google Scholar 

  44. Robertson SA, Sharkey DJ. Seminal fluid and fertility in women. Fertil Steril. 2016;106:511–9. https://doi.org/10.1016/j.fertnstert.2016.07.1101.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsue Takeya .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Nerve-independent, spontaneous contractions of an excised guinea pig whole SV connected to an irrigator (3× speed replay) (M2V 87708 kb)

Asynchronous spontaneous Ca2+ transients and subsequent ATP Adenosine triphosphate (ATP) (100 μM)-induced Ca2+ transients in SV submucosal cells (3× speed replay) (MP4 4651 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takeya, M., Hayashi, T., Hashitani, H., Takano, M. (2019). Mucosa-Dependent, Stretch-Sensitive Spontaneous Activity in Seminal Vesicle. In: Hashitani, H., Lang, R. (eds) Smooth Muscle Spontaneous Activity. Advances in Experimental Medicine and Biology, vol 1124. Springer, Singapore. https://doi.org/10.1007/978-981-13-5895-1_9

Download citation

Publish with us

Policies and ethics