Advertisement

Pacemaker Mechanisms Driving Pyeloureteric Peristalsis: Modulatory Role of Interstitial Cells

  • Richard J. LangEmail author
  • Hikaru Hashitani
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1124)

Abstract

The peristaltic pressure waves in the renal pelvis that propel urine expressed by the kidney into the ureter towards the bladder have long been considered to be ‘myogenic’, being little affected by blockers of nerve conduction or autonomic neurotransmission, but sustained by the intrinsic release of prostaglandins and sensory neurotransmitters. In uni-papilla mammals, the funnel-shaped renal pelvis consists of a lumen-forming urothelium and a stromal layer enveloped by a plexus of ‘typical’ smooth muscle cells (TSMCs), in multi-papillae kidneys a number of minor and major calyces fuse into a large renal pelvis. Electron microscopic, electrophysiological and Ca2+ imaging studies have established that the pacemaker cells driving pyeloureteric peristalsis are likely to be morphologically distinct ‘atypical’ smooth muscle cells (ASMCs) that fire Ca2+ transients and spontaneous transient depolarizations (STDs) which trigger propagating nifedipine-sensitive action potentials and Ca2+ waves in the TSMC layer. In uni-calyceal kidneys, ASMCs predominately locate on the serosal surface of the proximal renal pelvis while in multi-papillae kidneys they locate within the sub-urothelial space. ‘Fibroblast-like’ interstitial cells (ICs) located in the sub-urothelial space or adventitia are a mixed population of cells, having regional and species-dependent expression of various Cl, K+, Ca2+ and cationic channels. ICs display asynchronous Ca2+ transients that periodically synchronize into bursts that accelerate ASMC Ca2+ transient firing. This review presents current knowledge of the architecture of the proximal renal pelvis, the role Ca2+ plays in renal pelvis peristalsis and the mechanisms by which ICs may sustain/accelerate ASMC pacemaking.

Keywords

Pyeloureteric peristalsis Atypical smooth muscle cells Interstitial cells Calcium imaging Calcium channels Pacemaking Upper urinary tract 

Notes

Acknowledgements

The authors acknowledge the use of the imaging facilities within the Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) at the Monash University node of the National Imaging Facility.

Supplementary material

Supplementary Video 3.1

Video of the three dimensional reconstruction of the bulb region of the mouse proximal renal pelvis (Fig. 3.1c), highlighting individual cells populations (MP4 71176 kb)

Supplementary Video 3.2

Spontaneous Ca2+ signals in atypical smooth muscle cells (ASMCs) and ICs in contraction-arrested renal pelvis using Ca2+ indicators Fluo-4 and Cal 520, illustrating their differing temporal kinetics and bursting behaviour (MP4 37878 kb)

References

  1. 1.
    Walsberg GE. Small mammals in hot deserts: some generalizations revisited. Bioscience. 2000;50:109–20.CrossRefGoogle Scholar
  2. 2.
    Nguyen MJ, Higashi R, Ohta K, Nakamura KI, Hashitani H, Lang RJ. Autonomic and sensory nerve modulation of peristalsis in the upper urinary tract. Auton Neurosci. 2016;200:1–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Hashitani H, Nguyen MJ, Noda H, Mitsui R, Higashi R, Ohta K, et al. Interstitial cell modulation of pyeloureteric peristalsis in the mouse renal pelvis examined using FIBSEM tomography and calcium indicators. Pflugers Arch. 2017;469:797–813.PubMedCrossRefGoogle Scholar
  4. 4.
    Dixon JS, Gosling JA. Electron microscopic observations on the renal caliceal wall in the rat. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie. 1970;103:328–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Iqbal J, Tonta MA, Mitsui R, Li Q, Kett M, Li J, et al. Potassium and ANO1/TMEM16A chloride channel profiles distinguish atypical and typical smooth muscle cells from interstitial cells in the mouse renal pelvis. Br J Pharmacol. 2012;165:2389–408.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gosling JA, Dixon JS. Species variation in the location of upper urinary tract pacemaker cells. Investig Urol. 1974;11:418–23.Google Scholar
  7. 7.
    Schmidt-Nielsen B. The renal pelvis. Kidney Int. 1987;31:621–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Klemm MF, Exintaris B, Lang RJ. Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol. 1999;519:867–84.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dixon JS, Gosling JA. The fine structure of pacemaker cells in the pig renal calices. Anat Rec. 1973;175:139–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Dixon JS, Gosling JA. The musculature of the human renal calices, pelvis and upper ureter. J Anat. 1982;135:129–37.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Gosling JA, Dixon JS. Morphologic evidence that the renal calyx and pelvis control ureteric activity in the rabbit. Am J Anat. 1971;130:393–408.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Dixon JS, Gosling JA. Fine structural observations on the attachment of the calix to the renal parenchyma in the rat. J Anat. 1970;106:181–2.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lang RJ, Klemm MF. Interstitial cell of Cajal-like cells in the upper urinary tract. J Cell Mol Med. 2005;9:543–56.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Englemann TW. Zur Physiologie des Ureter. Pflugers Arch Ges Physiol. 1869;2:243–93.CrossRefGoogle Scholar
  15. 15.
    Golenhofen K, Hannappel J. Normal spontaneous activity of the pyeloureteral system in the guinea-pig. Pflugers Arch. 1973;341:257–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Morita T. The in vitro study of the pacemaker activity of the canine renal pelvis throughout simultaneous recordings of pelvic pressure changes and electromyogram on various regions of the renal pelvis. Nihon Hinyokika Gakkai Zasshi. 1978;69:304–14.PubMedGoogle Scholar
  17. 17.
    Tsuchida S, Morita T, Yamaguchi O. The simultaneous recording of the rhythmic contraction and electrical activity of the renal previs—a new in vitro method. Tohoku J Exp Med. 1978;124:93–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Longrigg N. Minor calyces as primary pacemaker sites for ureteral activity in man. Lancet. 1975;1:253–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Weiss R, Wagner ML, Hoffman BF. Localization of the pacemaker for peristalsis in the intact canine ureter. Investig Urol. 1967;5:42–8.Google Scholar
  20. 20.
    Weiss RM, Tamarkin FJ, Wheeler MA. Pacemaker activity in the upper urinary tract. J Smooth Muscle Res. 2006;42:103–15.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Dwyer TM, Schmidt-Nielsen B. The renal pelvis: machinery that concentrates urine in the papilla. News Physiol Sci. 2003;18:1–6.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Teele ME, Lang RJ. Stretch-evoked inhibition of spontaneous migrating contractions in a whole mount preparation of the Guinea-pig upper urinary tract. Brit J Pharmacol. 1998;123:1143–53.CrossRefGoogle Scholar
  23. 23.
    Lang RJ, Takano H, Davidson ME, Suzuki H, Klemm MF. Characterization of the spontaneous electrical and contractile activity of smooth muscle cells in the rat upper urinary tract. J Urol. 2001;166:329–34.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lang RJ, Davidson ME, Exintaris B. Pyeloureteral motility and ureteral peristalsis: essential role of sensory nerves and endogenous prostaglandins. Exp Physiol. 2002;87:129–46.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Bozler E. The activity of the pacemaker previous to the discharge of a muscular impulse. Am J Phys. 1942;136:543–52.CrossRefGoogle Scholar
  26. 26.
    Hannappel H, Golenhofen K. Comparative studies on normal ureteral peristalsis in dogs, guinea-pigs and rats. Pflugers Arch. 1974;348:65.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Djurhuus JC. Dynamics of upper urinary tract. III. The activity of renal pelvis during pressure variations. Investig Urol. 1977;14:475–7.Google Scholar
  28. 28.
    Thulesius O, Ugaily-Thulesius L, Angelo-Khattar M. Generation and transmission of ovine ureteral contractions, with special reference to prostaglandins. Acta Physiol Scand. 1986;127:485–90.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gosling JA, Constantinou CE. The origin and propagation of upper urinary tract contraction waves. A new in vitro methodology. Experientia. 1976;32:266–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yamaguchi O, Constantinou CE. Renal calyceal and pelvic contraction rhythms. Am J Phys. 1989;257:R788–95.Google Scholar
  31. 31.
    Constantinou CE. Renal pelvic pacemaker control of ureteral peristaltic rate. Am J Phys. 1974;226:1413–9.CrossRefGoogle Scholar
  32. 32.
    Constantinou CE, Silvert MA, Gosling J. Pacemaker system in the control of ureteral peristaltic rate in the multicalyceal kidney of the pig. Investig Urol. 1977;14:440–1.Google Scholar
  33. 33.
    Morita T, Ishizuka G, Tsuchida S. Initiation and propagation of stimulus from the renal pelvic pacemaker in pig kidney. Investig Urol. 1981;19:157–60.Google Scholar
  34. 34.
    Tsuchida S, Morita T, Harada T, Kimura Y. Initiation and propagation of canine renal pelvic peristalsis. Urol Int. 1981;36:307–14.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Constantinou CE, Yamaguchi O. Multiple-coupled pacemaker system in renal pelvis of the unicalyceal kidney. Am J Phys. 1981;241:412–8.Google Scholar
  36. 36.
    Hannappel H, Golenhofen K, Hohnsbein J, Lutzeyer W. Pacemaker process of ureteral peristalsis in multicalyceal kidneys. Urol Int. 1982;37:240–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lammers WJ, Ahmad HR, Arafat K. Spatial and temporal variations in pacemaking and conduction in the isolated renal pelvis. Am J Phys. 1996;270:F567–74.Google Scholar
  38. 38.
    Hurtado R, Bub G, Herzlinger D. The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int. 2010;77:500–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hurtado R, Bub G, Herzlinger D. A molecular signature of tissues with pacemaker activity in the heart and upper urinary tract involves coexpressed hyperpolarization-activated cation and T-type Ca2+ channels. FASEB J. 2014;28:730–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Constantinou CE, Hrynczuk JR. The incidence of ecotpic peristaltic contractions. Urol Int. 1976;31:476–88.PubMedCrossRefGoogle Scholar
  41. 41.
    Davidson ME, Lang RJ. Effects of selective inhibitors of cyclo-oxygenase-1 (COX-1) and cyclo- oxygenase-2 (COX-2) on the spontaneous myogenic contractions in the upper urinary tract of the guinea-pig and rat. Br J Pharmacol. 2000;129:661–70.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shiratori T, Kinoshita H. Electromyographic studies on urinary tract. II. Electromyographic study on the genesis of peristaltic movement of the dog’s ureter. Tohoku J Exp Med. 1961;73:103–17.CrossRefGoogle Scholar
  43. 43.
    Morita T, Kondo S, Suzuki T, Ichikawa S, Tsuchida S. Effect of calyceal resection on pelviureteral peristalsis in isolated pig kidney. J Urol. 1986;135:151–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Hannappel J, Lutzeyer W. Pacemaker localization in the renal pelvis of the unicalyceal kidney. In vitro study in the rabbit. Eur Urol. 1978;4:192–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Constantinou CE. Contractility of the pyeloureteral pacemaker system. Urol Int. 1978;33:399–416.PubMedCrossRefGoogle Scholar
  46. 46.
    Constantinou CE, Neubarth JL, Mensah-Dwumah M. Frequency gradient in the autorhythmicity of the pyeloureteral pacemaker system. Experientia. 1978;34:614–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Morita T. Characteristics of spontaneous contraction and effects of isoproterenol on contractility in isolated rabbit renal pelvic smooth muscle strips. J Urol. 1986;135:604–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Longrigg N. In vitro studies on smooth muscle of the human renal pelvis. Eur J Pharmacol. 1975;34:293–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Weiss RM, Bassett AL, Hoffman BF. Dynamic length-tension curves of cat ureter. Am J Phys. 1972;222:388–93.CrossRefGoogle Scholar
  50. 50.
    Thulesius O, Angelo-Khattar M, Sabha M. The effect of ureteral distension on peristalsis. Studies on human and sheep ureters. Urol Res. 1989;17:385–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Potjer RM, Kimoto Y, Constantinou CE. Topological localization of the frequency and amplitude characteristics of the whole and segmented renal pelvis. Urol Int. 1992;48:278–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Constantinou CE, Hrynczuk JR. Urodynamics of the upper urinary tract. Investig Urol. 1976;14:233–40.Google Scholar
  53. 53.
    Lang RJ, Zhang Y. The effects of K+ channel blockers on the spontaneous electrical and contractile activity in the proximal renal pelvis of the guinea pig. J Urol. 1996;155:332–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Hurtado R, Smith CS. Hyperpolarization-activated cation and T-type calcium ion channel expression in porcine and human renal pacemaker tissues. J Anat. 2016;228:812–25.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Metzger R, Schuster T, Till H, Franke FE, Dietz HG. Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr Surg Int. 2005;21:169–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Metzger R, Neugebauer A, Rolle U, Bohlig L, Till H. C-Kit receptor (CD117) in the porcine urinary tract. Pediatr Surg Int. 2008;24(1):67–76.PubMedCrossRefGoogle Scholar
  57. 57.
    Metzger R, Schuster T, Till H, Stehr M, Franke FE, Dietz HG. Cajal-like cells in the human upper urinary tract. J Urol. 2004;172:769–72.PubMedCrossRefGoogle Scholar
  58. 58.
    van der Aa F, Roskams T, Blyweert W, Ost D, Bogaert G, De Ridder D. Identification of kit positive cells in the human urinary tract. J Urol. 2004;171:2492–6.CrossRefGoogle Scholar
  59. 59.
    Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, et al. Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Ren Physiol. 2003;284:F925–9.CrossRefGoogle Scholar
  60. 60.
    David SG, Cebrian C, Vaughan ED, Herzlinger D. C-kit and ureteral peristalsis. J Urol. 2005;173:292–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Arena S, Fazzari C, Arena F, Scuderi MG, Romeo C, Nicotina PA, et al. Altered ‘active’ antireflux mechanism in primary vesico-ureteric reflux: a morphological and manometric study. BJU Int. 2007;100:407–12.PubMedCrossRefGoogle Scholar
  62. 62.
    Eken A, Erdogan S, Kuyucu Y, Seydaoglu G, Polat S, Satar N. Immunohistochemical and electron microscopic examination of Cajal cells in ureteropelvic junction obstruction. Can Urol Assoc J. 2013;7:E311–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest. 2011;121:1199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Solari V, Piotrowska AP, Puri P. Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol. 2003;170:2420–2.PubMedCrossRefGoogle Scholar
  65. 65.
    Yang X, Zhang Y, Hu J. The expression of Cajal cells at the obstruction site of congenital pelviureteric junction obstruction and quantitative image analysis. J Pediatr Surg. 2009;44:2339–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, et al. A Ca2+-activated Cl conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol. 2009;587:4905–18.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kobayashi M. Relationship between membrane potential and spike configuration recorded by sucrose gap method in the ureter smooth muscle. Comp Biochem Physiol. 1971;38A:301–8.CrossRefGoogle Scholar
  68. 68.
    Zawalinski VC, Constantinou CE, Burnstock G. Ureteral pacemaker potentials recorded with the sucrose gap technique. Experientia. 1975;31:931–3.PubMedCrossRefGoogle Scholar
  69. 69.
    Santicioli P, Maggi CA. Pharmacological modulation of electromechanical coupling in the proximal and distal regions of the guinea-pig renal pelvis. J Auton Pharmacol. 1997;17:43–52.PubMedCrossRefGoogle Scholar
  70. 70.
    Irisawa H, Kobayashi M. Effects of repetitive stimuli and temperature on ureter action potentials. Jpn J Physiol. 1963;13:421–30.PubMedCrossRefGoogle Scholar
  71. 71.
    Kuriyama H, Osa T, Toida N. Membrane properties of the smooth muscle of guinea-pig ureter. J Physiol. 1967;191:225–38.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Exintaris B, Lang RJ. Effects of nerve stimulation on spontaneously active preparations of the guinea pig ureter. Urol Res. 1999;27:328–35.PubMedCrossRefGoogle Scholar
  73. 73.
    Exintaris B, Lang RJ. K(+) channel blocker modulation of the refractory period in spontaneously active guinea-pig ureters. Urol Res. 1999;27:319–27.PubMedGoogle Scholar
  74. 74.
    Tsuchida S, Suzuki T. Pacemaker activity of the pelvicalyceal border recorded by an intracellular glass microelectrode. Urol Int. 1992;48:121–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang Y, Lang RJ. Effects of intrinsic prostaglandins on the spontaneous contractile and electrical activity of the proximal renal pelvis of the guinea-pig. Br J Pharmacol. 1994;113:431–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kobayashi M. Effect of calcium on electrical activity in smooth muscle cells of cat ureter. Am J Phys. 1969;216:1279–85.CrossRefGoogle Scholar
  77. 77.
    Lang RJ, Hashitani H, Tonta MA, Parkington HC, Suzuki H. Spontaneous electrical and Ca2+ signals in typical and atypical smooth muscle cells and interstitial cell of Cajal-like cells of mouse renal pelvis. J Physiol. 2007;583:1049–68.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lang RJ, Hashitani H, Tonta MA, Suzuki H, Parkington HC. Role of Ca2+ entry and Ca2+ stores in atypical smooth muscle cell autorhythmicity in the mouse renal pelvis. Br J Pharmacol. 2007;152:1248–59.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Takano H, Nakahira Y, Suzuki H. Properties of spontaneous electrical activity in smooth muscle of the guinea-pig renal pelvis. Jpn J Physiol. 2000;50:597–603.PubMedCrossRefGoogle Scholar
  80. 80.
    Burdyga T, Wray S. Action potential refractory period in ureter smooth muscle is set by Ca sparks and BK channels. Nature. 2005;436:559–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Burdyga TV, Wray S. The relationship between the action potential, intracellular calcium and force in intact phasic, guinea-pig uretic smooth muscle. J Physiol. 1999;520:867.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lang RJ, Hashitani H, Keller S, Takano H, Mulholland EL, Fukuta H, et al. Modulators of internal Ca2+ stores and the spontaneous electrical and contractile activity of the guinea-pig renal pelvis. Br J Pharmacol. 2002;135:1363–74.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nguyen MJ, Hashitani H, Lang RJ. Angiotensin receptor-1A knockout leads to hydronephrosis not associated with a loss of pyeloureteric peristalsis in the mouse renal pelvis. Clin Exp Pharmacol Physiol. 2016;43:535–42.PubMedCrossRefGoogle Scholar
  84. 84.
    Lang RJ, Zhang Y, Exintaris B, Vogalis F. Effects of nerve stimulation on the spontaneous action potentials recorded in the proximal renal pelvis of the guinea-pig. Urol Res. 1995;23:343–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, et al. A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J Biol Chem. 2006;281:4823–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Lang RJ, Exintaris B, Teele ME, Harvey J, Klemm MF. Electrical basis of peristalsis in the mammalian upper urinary tract. Clin Exp Pharmacol Physiol. 1998;25:310–21.PubMedCrossRefGoogle Scholar
  87. 87.
    Lang RJ, Tonta MA, Zoltkowski BZ, Meeker WE, Wendt I, Parkington HC. Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers. J Physiol. 2006;576:695–705.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Johnston L, Sergeant GP, Hollywood MA, Thornbury KD, McHale NG. Calcium oscillations in interstitial cells of the rabbit urethra. J Physiol. 2005;565:449–61.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hashitani H, Lang RJ, Mitsui R, Mabuchi Y, Suzuki H. Distinct effects of CGRP on typical and atypical smooth muscle cells involved in generating spontaneous contractions in the mouse renal pelvis. Br J Pharmacol. 2009;158:2030–45.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hashitani H, Suzuki H. Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J Physiol. 2007;583:505–19.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hashitani H, Suzuki H. Identification of interstitial cells of Cajal in corporal tissues of the guinea-pig penis. Br J Pharmacol. 2004;14:199–204.CrossRefGoogle Scholar
  92. 92.
    Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I, Kurosaki T, et al. Ca2+-sensor region of IP3 receptor controls intracellular Ca2+ signaling. EMBO J. 2001;20:1674–80.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lang RJ, Hashitani H, Tonta MA, Bourke JL, Parkington HC, Suzuki H. Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis. Clin Exp Pharmacol Physiol. 2010;37:509–15.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev. 2009;89:847–85.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lang RJ, Tonta MA, Takano H, Hashitani H. Voltage-operated Ca2+ currents and Ca2+-activated Cl currents in single interstitial cells of the guinea pig prostate. BJU Int. 2014;114:436–46.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Lang RJ, Zoltkowski BZ, Hammer JM, Meeker WF, Wendt I. Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction. J Urol. 2007;177:1573–80.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Santicioli P, Maggi CA. Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev. 1998;50:683–722.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Thulesius O, Angelo-Khattar M, Ali M. The effect of prostaglandin synthesis inhibition on motility of the sheep ureter. Acta Physiol Scand. 1987;131:51–4.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Ali M, Angelo-Khattar M, Thulesius L, Fareed A, Thulesius O. Urothelial synthesis of prostanoids in the ovine ureter. Urol Res. 1998;26:171–4.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Lang RJ. Role of hyperpolarization-activated cation channels in pyeloureteric peristalsis. Kidney Int. 2010;77:483–5.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Peretz A, Degani-Katzav N, Talmon M, Danieli E, Gopin A, Malka E, et al. A tale of switched functions: from cyclooxygenase inhibition to M-channel modulation in new diphenylamine derivatives. PLoS One. 2007;2:e1332.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Neacsu C, Babes A. The M-channel blocker linopirdine is an agonist of the capsaicin receptor TRPV1. J Pharmacol Sci. 2010;114(3):332–40.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ammons WS. Bowditch Lecture. Renal afferent inputs to ascending spinal pathways. Am J Phys. 1992;262:R165–76.Google Scholar
  104. 104.
    Amann R, Skofitsch G, Lembeck F. Species-related differences in the capsaicin-sensitive innervation of the rat and guinea-pig ureter. Naunyn Schmiedeberg’s Arch Pharmacol. 1988;338:407–10.CrossRefGoogle Scholar
  105. 105.
    Su HC, Wharton J, Polak JM, Mulderry PK, Ghatei MA, Gibson SJ, et al. Calcitonin gene-related peptide immunoreactivity in afferent neurons supplying the urinary tract: combined retrograde tracing and immunohistochemistry. Neuroscience. 1986;18:727–47.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Hua XY, Theodorsson-Norheim E, Lundberg JM, Kinn AC, Hokfelt T, Cuello AC. Co-localization of tachykinins and calcitonin gene-related peptide in capsaicin-sensitive afferents in relation to motility effects on the human ureter in vitro. Neuroscience. 1987;23:693–703.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Edyvane KA, Smet PJ, Trussell DC, Jonavicius J, Marshall VR. Patterns of neuronal colocalisation of tyrosine hydroxylase, neuropeptide Y, vasoactive intestinal polypeptide, calcitonin gene-related peptide and substance P in human ureter. J Auton Nerv Syst. 1994;48:241–55.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Ferguson M, Bell C. Ultrastructural localization and characterization of sensory nerves in the rat kidney. J Comp Neurol. 1988;274:9–16.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Maggi CA, Meli A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol. 1988;19:1–43.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Maggi CA, Giuliani S. The neurotransmitter role of calcitonin gene-related peptide in the rat and guinea-pig ureter: effect of a calcitonin gene- related peptide antagonist and species-related differences in the action of omega conotoxin on calcitonin gene-related peptide release from primary afferents. Neuroscience. 1991;43:261–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Chung MK, Guler AD, Caterina MJ. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci. 2008;11:555–64.PubMedCrossRefGoogle Scholar
  112. 112.
    Hua XY, Lundberg JM. Dual capsaicin effects on ureteric motility: low dose inhibition mediated by calcitonin gene-related peptide and high dose stimulation by tachykinins? Acta Physiol Scand. 1986;128:453–65.PubMedCrossRefGoogle Scholar
  113. 113.
    Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience. 1988;24:739–68.PubMedCrossRefGoogle Scholar
  114. 114.
    Maggi CA, Patacchini R, Santicioli P, Giuliani S, Del Bianco E, Geppetti P, et al. The ‘efferent’ function of capsaicin-sensitive nerves: ruthenium red discriminates between different mechanisms of activation. Eur J Pharmacol. 1989;170:167–77.PubMedCrossRefGoogle Scholar
  115. 115.
    Maggi CA, Santicioli P, Giuliani S, Abelli L, Meli A. The motor effect of the capsaicin-sensitive inhibitory innervation of the rat ureter. Eur J Pharmacol. 1986;126:333–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Maggi CA, Giuliani S, Santicioli P. Multiple mechanisms in the smooth muscle relxant action of calcitonin gene-related peptide (CGRP) in the guinea-pig ureter. Naunyn Schmiedeberg’s Arch Pharmacol. 1994;350:537–47.Google Scholar
  117. 117.
    Maggi CA, Theodorsson E, Santicioli P, Giuliani S. Tachykinins and calcitonin gene-related peptide as co- transmitters in local motor responses produced by sensory nerve activation in the guinea-pig isolated renal pelvis. Neuroscience. 1992;46:549–59.PubMedCrossRefGoogle Scholar
  118. 118.
    Maggi CA, Astolfi M, Giuliani S, Goso C, Manzini S, Meini S, et al. MEN 10,627, a novel polycyclic peptide antagonist of tachykinin NK2 receptors. J Pharmacol Exp Ther. 1994;271:1489–500.PubMedGoogle Scholar
  119. 119.
    Maggi CA, Giuliani S, Meini S, Santicioli P. Calcitonin gene related peptide as inhibitory neurotransmitter in the ureter. Can J Physiol Pharmacol. 1995;73:986–90.PubMedCrossRefGoogle Scholar
  120. 120.
    Maggi CA, Giuliani S, Santicioli P. CGRP inhibition of electromechanical coupling in the Guinea-pig isolated renal pelvis. Naunyn Schmiedeberg’s Arch Pharmacol. 1995;352:529–39.CrossRefGoogle Scholar
  121. 121.
    Rolle U, Chertin B, Nemeth L, Puri P. Demonstration of nitrergic and cholinergic innervation in whole-mount preparations of rabbit, pig, and human upper urinary tract. Pediatr Surg Int. 2002;18:315–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Gosling JA, Dixon JS. Catecholamine-containing nerves in the submucosa of the ureter. Experientia. 1971;27:1065–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Gosling JA, Dixon JS. The effect of 6-hydroxydopamine on nerves in the rat upper urinary tract. J Cell Sci. 1972;10(1):197–209.PubMedGoogle Scholar
  124. 124.
    Warburton AL, Santer RM. Sympathetic and sensory innervation of the urinary tract in young adult and aged rats: a semi-quantitative histochemical and immunohistochemical study. Histochem J. 1994;26:127–33.PubMedCrossRefGoogle Scholar
  125. 125.
    Nguyen MJ, Angkawaijawa S, Hashitani H, Lang RJ. Nicotinic receptor activation on primary sensory afferents modulates autorhythmicity in the mouse renal pelvis. Br J Pharmacol. 2013;170:1221–32.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Morita T, Wada I, Suzuki T, Tsuchida S. Characterization of alpha-adrenoceptor subtypes involved in regulation of ureteral fluid transport. Tohoku Exp Med. 1987;152:111–8.CrossRefGoogle Scholar
  127. 127.
    Wheeler MA, Martin TV, Weiss RM. Effect of carbachol and norepinephrine on phosphatidyl-inositol hydrolysis and cyclic-amp levels in guinea-pig urinary-tract. J Urol. 1995;153:2044–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Weiss RM, Vulliemoz Y, Verosky M, Rosen MR, Triner L. Adenylate cyclase and phosphodiesterase activity in rabbit ureter. Investig Urol. 1977;15:15–8.Google Scholar
  129. 129.
    Kovalev IV, Popov AG, Baskakov MB, Minochenko IL, Kilin AA, Borodin YL, et al. Effect of inhibitors of cyclic nucleotide phosphodiesterases on electrical and contractile activity of smooth muscle cells. Bull Exp Biol Med. 2002;133:38–40.PubMedCrossRefGoogle Scholar
  130. 130.
    Morita T, Miyagawa I, Wheeler M, Weiss RM. Effect of isoproterenol on contractile force of isolated rabbit renal pelvic smooth muscle. Tohoku J Exp Med. 1985;147:153–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Kondo S, Morita T, Tsuchida S, Terui M, Tashima Y. Effect of dobutamine on adenylate cyclase activity in rabbit renal pelvis and ureter. Tohoku J Exp Med. 1986;148:113–4.PubMedCrossRefGoogle Scholar
  132. 132.
    Sorensen SS, Husted SE, Nissen T, Djurhuus JC. Topographic variations in alpha-adrenergic and cholinergic response in the pig renal pelvis. Urol Int. 1983;38:271–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Hernandez M, Simonsen U, Prieto D, Rivera L, Garcia P, Ordaz E, et al. Different muscarinic receptor subtypes mediating the phasic activity and basal tone of pig isolated intravesical ureter. Br J Pharmacol. 1993;110:1413–20.PubMedCrossRefGoogle Scholar
  134. 134.
    Long S, Nergardh A. Autonomic receptor functions of the human ureter: an in vitro study. Scand J Urol Nephrol. 1978;12:23–6.PubMedGoogle Scholar
  135. 135.
    Yoshida S, Kuga T. Effects of field stimulation on cholinergic fibers of the pelvic region in the isolated guinea pig ureter. Jpn J Physiol. 1980;30:415–26.PubMedCrossRefGoogle Scholar
  136. 136.
    Roshani H, Dabhoiwala NF, Dijkhuis T, Pfaffendorf M, Boon TA, Lamers WH. Pharmacological modulation of ureteral peristalsis in a chronically instrumented conscious pig model. I: effect of cholinergic stimulation and inhibition. J Urol. 2003;170:264–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Tomiyama Y, Wanajo I, Yamazaki Y, Kojima M, Shibata N. Effects of cholinergic drugs on ureteral function in anesthetized dogs. J Urol. 2004;172:1520–3.PubMedCrossRefGoogle Scholar
  138. 138.
    Borysova L, Shabir S, Walsh MP, Burdyga T. The importance of Rho-associated kinase-induced Ca2+ sensitization as a component of electromechanical and pharmacomechanical coupling in rat ureteric smooth muscle. Cell Calcium. 2011;50:393–405.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci. 2005;6:850–62.PubMedCrossRefGoogle Scholar
  140. 140.
    Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci. 2007;112:417–28.PubMedCrossRefGoogle Scholar
  141. 141.
    Carlstrom M, Brown RD, Edlund J, Sallstrom J, Larsson E, Teerlink T, et al. Role of nitric oxide deficiency in the development of hypertension in hydronephrotic animals. Am J Physiol Ren Physiol. 2008;294:F362–70.CrossRefGoogle Scholar
  142. 142.
    Chertin B, Pollack A, Koulikov D, Rabinowitz R, Shen O, Hain D, et al. Does renal function remain stable after puberty in children with prenatal hydronephrosis and improved renal function after pyeloplasty? J Urol. 2009;182:1845–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Schedl A. Renal abnormalities and their developmental origin. Nat Rev Genet. 2007;8:791–802.PubMedCrossRefGoogle Scholar
  144. 144.
    Song R, Yosypiv IV. Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. 2011;26:353–64.PubMedCrossRefGoogle Scholar
  145. 145.
    Kaya C, Bogaert G, de Ridder D, Schwentner C, Fritsch H, Oswald J, et al. Extracellular matrix degradation and reduced neural density in children with intrinsic ureteropelvic junction obstruction. Urology. 2010;76:185–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Gosling JA, Dixon JS. Functional obstruction of the ureter and renal pelvis. A histological and electron microscopic study. Br J Urol. 1978;50:145–52.PubMedCrossRefGoogle Scholar
  147. 147.
    Faussone-Pellegrini MS, Rizzo M, Grechi G. Ultrastructural modifications of the tunica muscularis in congenital obstruction of the upper urinary tract. Physiopathological interpretations and anatomo-clinical correlations. J Urol (Paris). 1984;90:217–26.Google Scholar
  148. 148.
    Murakumo M, Nonomura K, Yamashita T, Ushiki T, Abe K, Koyanagi T. Structural changes of collagen components and diminution of nerves in congenital ureteropelvic junction obstruction. J Urol. 1997;157:1963–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Kajbafzadeh AM, Payabvash S, Salmasi AH, Monajemzadeh M, Tavangar SM. Smooth muscle cell apoptosis and defective neural development in congenital ureteropelvic junction obstruction. J Urol. 2006;176:718–23.PubMedCrossRefGoogle Scholar
  150. 150.
    Baumgart P, Muller KM, Lison AE. Epithelial abnormalities in the renal pelvis in experimental hydronephrosis and pyelonephritis. Pathol Res Pract. 1983;176:185–95.PubMedCrossRefGoogle Scholar
  151. 151.
    Chiou YY, Shieh CC, Cheng HL, Tang MJ. Intrinsic expression of Th2 cytokines in urothelium of congenital ureteropelvic junction obstruction. Kidney Int. 2005;67:638–46.PubMedCrossRefGoogle Scholar
  152. 152.
    Stravodimos KG, Koritsiadis G, Lazaris AC, Agrogiannis G, Koutalellis G, Constantinides C, et al. Hydronephrosis promotes expression of hypoxia-inducible factor 1 alpha. Urol Int. 2009;82:38–42.PubMedCrossRefGoogle Scholar
  153. 153.
    Wang Y, Puri P, Hassan J, Miyakita H, Reen DJ. Abnormal innervation and altered nerve growth factor messenger ribonucleic acid expression in ureteropelvic junction obstruction. J Urol. 1995;154:679–83.PubMedCrossRefGoogle Scholar
  154. 154.
    Kuvel M, Canguven O, Murtazaoglu M, Albayrak S. Distribution of Cajal like cells and innervation in intrinsic ureteropelvic junction obstruction. Arch Ital Urol Androl. 2011;83:128–32.PubMedGoogle Scholar
  155. 155.
    Ozel SK, Emir H, Dervisoglu S, Akpolat N, Senel B, Kazez A, et al. The roles of extracellular matrix proteins, apoptosis and c-kit positive cells in the pathogenesis of ureteropelvic junction obstruction. J Pediatr Urol. 2010;6:125–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Koleda P, Apoznanski W, Wozniak Z, Rusiecki L, Szydelko T, Pilecki W, et al. Changes in interstitial cell of Cajal-like cells density in congenital ureteropelvic junction obstruction. Int Urol Nephrol. 2012;44:7–12.PubMedCrossRefGoogle Scholar
  157. 157.
    Apoznanski W, Koleda P, Wozniak Z, Rusiecki L, Szydelko T, Kalka D, et al. The distribution of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. Int Urol Nephrol. 2013;45:607–12.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, et al. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci U S A. 1998;95:15496–501.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Burson JM, Aguilera G, Gross KW, Sigmund CD. Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Phys. 1994;267:E260–7.Google Scholar
  160. 160.
    Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I. The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int. 1999;55:1683–95.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Miyazaki Y, Tsuchida S, Nishimura H, Pope JC, Harris RC, McKanna JM, et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest. 1998;102:1489–97.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Ismaili K, Hall M, Piepsz A, Alexander M, Schulman C, Avni FE. Insights into the pathogenesis and natural history of fetuses with renal pelvis dilatation. Eur Urol. 2005;48:207–14.PubMedCrossRefGoogle Scholar
  163. 163.
    Travaglini F, Bartoletti R, Gacci M, Rizzo M. Pathophysiology of reno-ureteral colic. Urol Int. 2004;72(Suppl 1):20–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Biomedical Sciences, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonAustralia
  2. 2.Department of Cell Physiology, Graduate School of Medical SciencesNagoya City UniversityNagoyaJapan

Personalised recommendations