The Myometrium: From Excitation to Contractions and Labour

  • Susan WrayEmail author
  • Clodagh Prendergast
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1124)


We start by describing the functions of the uterus, its structure, both gross and fine, innervation and blood supply. It is interesting to note the diversity of the female’s reproductive tract between species and to remember it when working with different animal models. Myocytes are the overwhelming cell type of the uterus (>95%) and our focus. Their function is to contract, and they have an intrinsic pacemaker and rhythmicity, which is modified by hormones, stretch, paracrine factors and the extracellular environment. We discuss evidence or not for pacemaker cells in the uterus. We also describe the sarcoplasmic reticulum (SR) in some detail, as it is relevant to calcium signalling and excitability. Ion channels, including store-operated ones, their contributions to excitability and action potentials, are covered. The main pathway to excitation is from depolarisation opening voltage-gated Ca2+ channels. Much of what happens downstream of excitability is common to other smooth muscles, with force depending upon the balance of myosin light kinase and phosphatase. Mechanisms of maintaining Ca2+ balance within the myocytes are discussed. Metabolism, and how it is intertwined with activity, blood flow and pH, is covered. Growth of the myometrium and changes in contractile proteins with pregnancy and parturition are also detailed. We finish with a description of uterine activity and why it is important, covering progression to labour as well as preterm and dysfunctional labours. We conclude by highlighting progress made and where further efforts are required.


Uterus Electrophysiology Pace-making Calcium signalling Sarcoplasmic reticulum Parturition 


  1. 1.
    Garfield RE, Chwalisz K, Shi L, Olson G, Saade GR. Instrumentation for the diagnosis of term and preterm labour. J Perinat Med. 1998;26(6):413–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Arrowsmith S, Robinson H, Noble K, Wray S. What do we know about what happens to myometrial function as women age? J Muscle Res Cell Motil. 2012;33(3–4):209–17.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update. 2010;16(6):725–44.PubMedCrossRefGoogle Scholar
  4. 4.
    D’Hooghe TM, Debrock S. Endometriosis, retrograde menstruation and peritoneal inflammation in women and in baboons. Hum Reprod Update. 2002;8(1):84–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuijsters NPM, Methorst WG, Kortenhorst MSQ, Rabotti C, Mischi M, Schoot BC. Uterine peristalsis and fertility: current knowledge and future perspectives: a review and meta-analysis. Reprod BioMed Online. 2017;35(1):50–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Lan VT, Khang VN, Nhu GH, Tuong HM. Atosiban improves implantation and pregnancy rates in patients with repeated implantation failure. Reprod BioMed Online. 2012;25(3):254–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Young RC, Hession RO. Three-dimensional structure of the smooth muscle in the term-pregnant human uterus. Obstet Gynecol. 1999;93(1):94–9.PubMedGoogle Scholar
  8. 8.
    Wray S, Noble K. Sex hormones and excitation-contraction coupling in the uterus: the effects of oestrous and hormones. J Neuroendocrinol. 2008;20(4):451–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Danforth DN. The morphology of the human cervix. Clin Obstet Gynecol. 1983;26(1):7–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 2010;21(6):353–61.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Vink J, Feltovich H. Cervical etiology of spontaneous preterm birth. Semin Fetal Neonatal Med. 2016;21(2):106–12.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yellon SM. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol Reprod. 2017;96(1):13–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Tica AA, Dun EC, Tica OS, Gao X, Arterburn JB, Brailoiu GC, et al. G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium. Am J Phys Cell Phys. 2011;301(5):C1262–9.CrossRefGoogle Scholar
  14. 14.
    Elmer M, Alm P, Thorbert G. Electrical field stimulation of myometrial strips from non-pregnant and pregnant guinea-pigs. Acta Physiol Scand. 1980;108(3):209–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Wikland M, Lindblom B, Dahlstrom A, Haglid KG. Structural and functional evidence for the denervation of human myometrium during pregnancy. Obstet Gynecol. 1984;64(4):503–9.PubMedGoogle Scholar
  16. 16.
    Hervonen A, Kanerva L, Lietzen R, Partanen S. Ultrastructural changes induced by estrogen in the adrenergic nerves of the rabbit myometrium. Acta Physiol Scand. 1972;85(2):283–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Zupko I, Csonka D, Falkay G. A rat model for functional characterization of pregnancy-induced denervation and postpartum reinnervation in the myometrium and cervix: a superfusion study. Reproduction. 2005;130(5):743–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Bryman I, Norstrom A, Dahlstrom A, Lindblom B. Immunohistochemical evidence for preserved innervation of the human cervix during pregnancy. Gynecol Obstet Investig. 1987;24(2):73–9.CrossRefGoogle Scholar
  19. 19.
    Kirby LS, Kirby MA, Warren JW, Tran LT, Yellon SM. Increased innervation and ripening of the prepartum murine cervix. J Soc Gynecol Investig. 2005;12(8):578–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Clyde LA, Lechuga TJ, Ebner CA, Burns AE, Kirby MA, Yellon SM. Transection of the pelvic or vagus nerve forestalls ripening of the cervix and delays birth in rats. Biol Reprod. 2011;84(3):587–94.PubMedCrossRefGoogle Scholar
  21. 21.
    Gandhi SV, Walker D, Milnes P, Mukherjee S, Brown BH, Anumba DO. Electrical impedance spectroscopy of the cervix in non-pregnant and pregnant women. Eur J Obstet Gynecol Reprod Biol. 2006;129(2):145–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Gnanamanickam GJ, Llewellyn-Smith IJ. Innervation of the rat uterus at estrus: a study in full-thickness, immunoperoxidase-stained whole-mount preparations. J Comp Neurol. 2011;519(4):621–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Sato Y, Hotta H, Nakayama H, Suzuki H. Sympathetic and parasympathetic regulation of the uterine blood flow and contraction in the rat. J Auton Nerv Syst. 1996;59(3):151–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Klukovits A, Gaspar R, Santha P, Jancso G, Falkay G. Functional and histochemical characterization of a uterine adrenergic denervation process in pregnant rats. Biol Reprod. 2002;67(3):1013–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Monica Brauer M, Smith PG. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci. 2015;187:1–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Mione MC, Cavanagh JF, Lincoln J, Milner P, Burnstock G. Pregnancy reduces noradrenaline but not neuropeptide levels in the uterine artery of the guinea-pig. Cell Tissue Res. 1990;259(3):503–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Anouar A, Schirar A, Germain G. Relaxant effect of the calcitonin gene-related peptide (CGRP) on the nonpregnant and pregnant rat uterus. Comparison with vascular tissue. Naunyn Schmiedeberg’s Arch Pharmacol. 1998;357(4):446–53.CrossRefGoogle Scholar
  28. 28.
    Yallampalli C, Chauhan M, Thota CS, Kondapaka S, Wimalawansa SJ. Calcitonin gene-related peptide in pregnancy and its emerging receptor heterogeneity. Trends Endocrinol Metab. 2002;13(6):263–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Gangula PR, Thota C, Wimalawansa SJ, Bukoski RD, Yallampalli C. Mechanisms involved in calcitonin gene-related peptide-induced relaxation in pregnant rat uterine artery. Biol Reprod. 2003;69(5):1635–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Mowa CN, Papka RE. The role of sensory neurons in cervical ripening: effects of estrogen and neuropeptides. J Histochem Cytochem. 2004;52(10):1249–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Amira S, Morrison JF, Rayfield KM. The effects of pregnancy and parturition on the substance P content of the rat uterus: uterine growth is accompanied by hypertrophy of its afferent innervation. Exp Physiol. 1995;80(4):645–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt C, Lobos E, Spanel-Borowski K. Pregnancy-induced changes in substance P and neurokinin 1 receptor (NK1-R) expression in the rat uterus. Reproduction. 2003;126(4):451–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Wimalasundera RC, Thom SA, Regan L, Hughes AD. Effects of vasoactive agents on intracellular calcium and force in myometrial and subcutaneous resistance arteries isolated from preeclamptic, pregnant, and nonpregnant woman. Am J Obstet Gynecol. 2005;192(2):625–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Stjernquist M, Alm P, Ekman R, Owman C, Sjoberg NO, Sundler F. Levels of neural vasoactive intestinal polypeptide in rat uterus are markedly changed in association with pregnancy as shown by immunocytochemistry and radioimmunoassay. Biol Reprod. 1985;33(1):157–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Mione MC, Cavallotti C, Burnstock G, Amenta F. The peptidergic innervation of the guinea pig uterine artery in pregnancy. Basic Appl Histochem. 1988;32(1):153–9.PubMedGoogle Scholar
  36. 36.
    Ramhorst R, Calo G, Paparini D, Vota D, Hauk V, Gallino L, et al. Control of the inflammatory response during pregnancy: potential role of VIP as a regulatory peptide. Ann N Y Acad Sci. 2018; Scholar
  37. 37.
    Osol G, Mandala M. Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda). 2009;24:58–71.Google Scholar
  38. 38.
    Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939–58.PubMedCrossRefGoogle Scholar
  39. 39.
    Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10(8):466–80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Noble K, Zhang J, Wray S. Lipid rafts, the sarcoplasmic reticulum and uterine calcium signalling: an integrated approach. J Physiol. 2006;570(Pt 1):29–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Miyoshi H, Boyle MB, MacKay LB, Garfield RE. Voltage-clamp studies of gap junctions between uterine muscle cells during term and preterm labor. Biophys J. 1996;71(3):1324–34.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ramondt J, Verhoeff A, Garfield RE, Wallenburg HC. Effects of estrogen treatment and inhibition of prostanoid synthesis on myometrial activity and gap junction formation in the oophorectomized ewe. Eur J Obstet Gynecol Reprod Biol. 1994;54(1):63–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Sheldon RE, Mashayamombe C, Shi SQ, Garfield RE, Shmygol A, Blanks AM, et al. Alterations in gap junction connexin43/connexin45 ratio mediate a transition from quiescence to excitation in a mathematical model of the myometrium. J R Soc Interface. 2014;11(101):20140726.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wray S, Burdyga T. Sarcoplasmic reticulum function in smooth muscle. Physiol Rev. 2010;90(1):113–78.PubMedCrossRefGoogle Scholar
  45. 45.
    Ross R, Klebanoff SJ. Fine structural changes in uterine smooth muscle and fibroblasts in response to estrogen. J Cell Biol. 1967;32(1):155–67.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC. Ca2+ microdomains in smooth muscle. Cell Calcium. 2006;40(5–6):461–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Matsuki K, Takemoto M, Suzuki Y, Yamamura H, Ohya S, Takeshima H, et al. Ryanodine receptor type 3 does not contribute to contractions in the mouse myometrium regardless of pregnancy. Pflugers Arch. 2017;469(2):313–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Burdyga T, Wray S, Noble K. In situ calcium signaling: no calcium sparks detected in rat myometrium. Ann N Y Acad Sci. 2007;1101:85–96.PubMedCrossRefGoogle Scholar
  49. 49.
    Tribe RM, Moriarty P, Poston L. Calcium homeostatic pathways change with gestation in human myometrium. Biol Reprod. 2000;63(3):748–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Shmigol AV, Eisner DA, Wray S. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J Physiol. 1998;511(Pt 3):803–11.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Shmygol A, Wray S. Modulation of agonist-induced Ca2+ release by SR Ca2+ load: direct SR and cytosolic Ca2+ measurements in rat uterine myocytes. Cell Calcium. 2005;37(3):215–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Taggart MJ, Wray S. Contribution of sarcoplasmic reticular calcium to smooth muscle contractile activation: gestational dependence in isolated rat uterus. J Physiol. 1998;511(Pt 1):133–44.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Noble K, Matthew A, Burdyga T, Wray S. A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle.Eur J Obstet Gynecol Reprod Biol. 2009;144(Suppl 1):S11–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Nelson MT, Bonev AD. The beta1 subunit of the Ca2+−sensitive K+ channel protects against hypertension. J Clin Invest. 2004;113(7):955–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Burdyga T, Wray S. Action potential refractory period in ureter smooth muscle is set by Ca sparks and BK channels. Nature. 2005;436(7050):559–62.CrossRefGoogle Scholar
  56. 56.
    Noble D, Borysova L, Wray S, Burdyga T. Store-operated Ca(2)(+) entry and depolarization explain the anomalous behaviour of myometrial SR: effects of SERCA inhibition on electrical activity, Ca(2)(+) and force. Cell Calcium. 2014;56(3):188–94.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gam C, Larsen LH, Mortensen OH, Engelbrechtsen L, Poulsen SS, Qvortrup K, et al. Unchanged mitochondrial phenotype, but accumulation of lipids in the myometrium in obese pregnant women. J Physiol. 2017;595(23):7109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Danylovych YV, Karakhim SA, Danylovych HV, Kolomiets OV, Kosterin SO. Electrochemical potential of the inner mitochondrial membrane and Ca2+ homeostasis of myometrium cells. Ukr Biochem J. 2015;87(5):61–71.PubMedCrossRefGoogle Scholar
  59. 59.
    McCarron JG, Muir TC. Mitochondrial regulation of the cytosolic Ca2+ concentration and the InsP3-sensitive Ca2+ store in guinea-pig colonic smooth muscle. J Physiol. 1999;516(Pt 1):149–61.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280(5370):1763–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174(7):915–21.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Batra S. The role of mitochondrial calcium uptake in contraction and relaxation of the human myometrium. Biochim Biophys Acta. 1973;305(2):428–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Gravina FS, Parkington HC, Kerr KP, de Oliveira RB, Jobling P, Coleman HA, et al. Role of mitochondria in contraction and pacemaking in the mouse uterus. Br J Pharmacol. 2010;161(6):1375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gravina FS, Jobling P, Kerr KP, de Oliveira RB, Parkington HC, van Helden DF. Oxytocin depolarizes mitochondria in isolated myometrial cells. Exp Physiol. 2011;96(9):949–56.PubMedCrossRefGoogle Scholar
  65. 65.
    Clark JF, Kuznetsov AV, Radda GK. ADP-regenerating enzyme systems in mitochondria of guinea pig myometrium and heart. Am J Phys. 1997;272(2 Pt 1):C399–404.CrossRefGoogle Scholar
  66. 66.
    Shanklin DR, Sibai BM. Ultrastructural aspects of preeclampsia. II. Mitochondrial changes. Am J Obstet Gynecol. 1990;163(3):943–53.PubMedCrossRefGoogle Scholar
  67. 67.
    McMurtrie EM, Ginsberg GG, Frederick GT, Kirkland JL, Stancel GM, Gardner RM. Effect of a diabetic state on myometrial ultrastructure and isolated uterine contractions in the rat. Proc Soc Exp Biol Med. 1985;180(3):497–504.PubMedCrossRefGoogle Scholar
  68. 68.
    Patel R, Moffatt JD, Mourmoura E, Demaison L, Seed PT, Poston L, et al. Effect of reproductive ageing on pregnant mouse uterus and cervix. J Physiol. 2017;595(6):2065–84.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lammers WJ. The electrical activities of the uterus during pregnancy. Reprod Sci. 2013;20(2):182–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Rabotti C, Mischi M. Propagation of electrical activity in uterine muscle during pregnancy: a review. Acta Physiol (Oxford). 2015;213(2):406–16.CrossRefGoogle Scholar
  71. 71.
    Lammers WJ, Stephen B, Al-Sultan MA, Subramanya SB, Blanks AM. The location of pacemakers in the uteri of pregnant guinea pigs and rats. Am J Phys Regul Integr Comp Phys. 2015;309(11):R1439–46.Google Scholar
  72. 72.
    Cretoiu SM, Cretoiu D, Popescu LM. Human myometrium—the ultrastructural 3D network of telocytes. J Cell Mol Med. 2012;16(11):2844–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Duquette RA, Shmygol A, Vaillant C, Mobasheri A, Pope M, Burdyga T, et al. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod. 2005;72(2):276–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Allix S, Reyes-Gomez E, Aubin-Houzelstein G, Noel D, Tiret L, Panthier JJ, et al. Uterine contractions depend on KIT-positive interstitial cells in the mouse: genetic and pharmacological evidence. Biol Reprod. 2008;79(3):510–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145(4):357–70.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Banciu DD, Banciu A, Radu BM. Electrophysiological features of telocytes. Adv Exp Med Biol. 2016;913:287–302.PubMedCrossRefGoogle Scholar
  77. 77.
    Peri LE, Koh BH, Ward GK, Bayguinov Y, Hwang SJ, Gould TW, et al. A novel class of interstitial cells in the mouse and monkey female reproductive tracts. Biol Reprod. 2015;92(4):102.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lee H, Koh BH, Peri LE, Sanders KM, Koh SD. Functional expression of SK channels in murine detrusor PDGFR+ cells. J Physiol. 2013;591(2):503–13.PubMedCrossRefGoogle Scholar
  79. 79.
    Monaghan KP, Johnston L, McCloskey KD. Identification of PDGFRalpha positive populations of interstitial cells in human and guinea pig bladders. J Urol. 2012;188(2):639–47.PubMedCrossRefGoogle Scholar
  80. 80.
    Young RC. Mechanotransduction mechanisms for coordinating uterine contractions in human labor. Reproduction. 2016;152(2):R51–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8):a003947.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bannister JP, Adebiyi A, Zhao G, Narayanan D, Thomas CM, Feng JY, et al. Smooth muscle cell alpha2delta-1 subunits are essential for vasoregulation by CaV1.2 channels. Circ Res. 2009;105(10):948–55.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, et al. The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci. 2011;14(2):173–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Miyoshi H, Urabe T, Fujiwara A. Electrophysiological properties of membrane currents in single myometrial cells isolated from pregnant rats. Pflugers Arch. 1991;419(3–4):386–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Inoue Y, Sperelakis N. Gestational change in Na+ and Ca2+ channel current densities in rat myometrial smooth muscle cells. Am J Phys. 1991;260(3 Pt 1):C658–63.CrossRefGoogle Scholar
  86. 86.
    Mershon JL, Mikala G, Schwartz A. Changes in the expression of the L-type voltage-dependent calcium channel during pregnancy and parturition in the rat. Biol Reprod. 1994;51(5):993–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Tezuka N, Ali M, Chwalisz K, Garfield RE. Changes in transcripts encoding calcium channel subunits of rat myometrium during pregnancy. Am J Phys. 1995;269(4 Pt 1):C1008–17.CrossRefGoogle Scholar
  88. 88.
    Collins PL, Moore JJ, Lundgren DW, Choobineh E, Chang SM, Chang AS. Gestational changes in uterine L-type calcium channel function and expression in guinea pig. Biol Reprod. 2000;63(5):1262–70.PubMedCrossRefGoogle Scholar
  89. 89.
    Longo M, Jain V, Vedernikov YP, Hankins GD, Garfield RE, Saade GR. Effects of L-type Ca(2+)-channel blockade, K(+)(ATP)-channel opening and nitric oxide on human uterine contractility in relation to gestational age and labour. Mol Hum Reprod. 2003;9(3):159–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Ohkubo T, Kawarabayashi T, Inoue Y, Kitamura K. Differential expression of L- and T-type calcium channels between longitudinal and circular muscles of the rat myometrium during pregnancy. Gynecol Obstet Investig. 2005;59(2):80–5.CrossRefGoogle Scholar
  91. 91.
    Blanks AM, Zhao ZH, Shmygol A, Bru-Mercier G, Astle S, Thornton S. Characterization of the molecular and electrophysiological properties of the T-type calcium channel in human myometrium. J Physiol. 2007;581(Pt 3):915–26.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Berkefeld H, Fakler B, Schulte U. Ca2+-activated K+ channels: from protein complexes to function. Physiol Rev. 2010;90(4):1437–59.PubMedCrossRefGoogle Scholar
  93. 93.
    Aaronson PI, Sarwar U, Gin S, Rockenbauch U, Connolly M, Tillet A, et al. A role for voltage-gated, but not Ca2+-activated, K+ channels in regulating spontaneous contractile activity in myometrium from virgin and pregnant rats. Br J Pharmacol. 2006;147(7):815–24.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Noble K, Floyd R, Shmygol A, Shmygol A, Mobasheri A, Wray S. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium. Cell Calcium. 2010;47(1):47–54.PubMedCrossRefGoogle Scholar
  95. 95.
    Pierce SL, Kresowik JDK, Lamping KG, England SK. Overexpression of SK3 channels dampens uterine contractility to prevent preterm labor in mice. Biol Reprod. 2008;78(6):1058–63.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Brainard AM, Korovkina VP, England SK. Potassium channels and uterine function. Semin Cell Dev Biol. 2007;18(3):332–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Robinson H, Wray S. A new slow releasing, H(2)S generating compound, GYY4137 relaxes spontaneous and oxytocin-stimulated contractions of human and rat pregnant myometrium. PLoS One. 2012;7(9):e46278.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bai X, Bugg GJ, Greenwood SL, Glazier JD, Sibley CP, Baker PN, et al. Expression of TASK and TREK, two-pore domain K+ channels, in human myometrium. Reproduction. 2005;129(4):525–30.PubMedCrossRefGoogle Scholar
  99. 99.
    Buxton IL, Singer CA, Tichenor JN. Expression of stretch-activated two-pore potassium channels in human myometrium in pregnancy and labor. PLoS One. 2010;5(8):e12372.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Monaghan K, Baker SA, Dwyer L, Hatton WC, Sik Park K, Sanders KM, et al. The stretch-dependent potassium channel TREK-1 and its function in murine myometrium. J Physiol. 2011;589(Pt 5):1221–33.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Heyman NS, Cowles CL, Barnett SD, Wu YY, Cullison C, Singer CA, et al. TREK-1 currents in smooth muscle cells from pregnant human myometrium. Am J Phys Cell Phys. 2013;305(6):C632–42.CrossRefGoogle Scholar
  102. 102.
    Greenwood IA, Tribe RM. Kv7 and Kv11 channels in myometrial regulation. Exp Physiol. 2014;99(3):503–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Parkington HC, Stevenson J, Tonta MA, Paul J, Butler T, Maiti K, et al. Diminished hERG K+ channel activity facilitates strong human labour contractions but is dysregulated in obese women. Nat Commun. 2014;5:4108.PubMedCrossRefGoogle Scholar
  104. 104.
    Greenwood IA, Yeung SY, Tribe RM, Ohya S. Loss of functional K+ channels encoded by ether-a-go-go-related genes in mouse myometrium prior to labour onset. J Physiol. 2009;587(Pt 10):2313–26.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    McCloskey C, Rada C, Bailey E, McCavera S, van den Berg HA, Atia J, et al. The inwardly rectifying K+ channel KIR7.1 controls uterine excitability throughout pregnancy. EMBO Mol Med. 2014;6(9):1161–74.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Smith RC, McClure MC, Smith MA, Abel PW, Bradley ME. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility. Reprod Biol Endocrinol. 2007;5:41.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Aickin CC, Vermue NA. Microelectrode measurement of intracellular chloride activity in smooth muscle cells of guinea-pig ureter. Pflugers Arch. 1983;397(1):25–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Qu Z, Wei RW, Mann W, Hartzell HC. Two bestrophins cloned from Xenopus laevis oocytes express Ca(2+)-activated Cl(−) currents. J Biol Chem. 2003;278(49):49563–72.PubMedCrossRefGoogle Scholar
  109. 109.
    Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455(7217):1210–5.CrossRefGoogle Scholar
  110. 110.
    Liu Y, Zhang H, Huang D, Qi J, Xu J, Gao H, et al. Characterization of the effects of Cl(−) channel modulators on TMEM16A and bestrophin-1 Ca(2)(+) activated Cl(−) channels. Pflugers Arch. 2015;467(7):1417–30.PubMedCrossRefGoogle Scholar
  111. 111.
    Large WA, Wang Q. Characteristics and physiological role of the Ca(2+)-activated Cl- conductance in smooth muscle. Am J Phys. 1996;271(2 Pt 1):C435–54.CrossRefGoogle Scholar
  112. 112.
    Elble RC, Ji G, Nehrke K, DeBiasio J, Kingsley PD, Kotlikoff MI, et al. Molecular and functional characterization of a murine calcium-activated chloride channel expressed in smooth muscle. J Biol Chem. 2002;277(21):18586–91.PubMedCrossRefGoogle Scholar
  113. 113.
    Jeong JW, Lee KY, Lydon JP, DeMayo FJ. Steroid hormone regulation of Clca3 expression in the murine uterus. J Endocrinol. 2006;189(3):473–84.PubMedCrossRefGoogle Scholar
  114. 114.
    Song J, Zhang X, Qi Z, Sun G, Chi S, Zhu Z, et al. Cloning and characterization of a calcium-activated chloride channel in rat uterus. Biol Reprod. 2009;80(4):788–94.PubMedCrossRefGoogle Scholar
  115. 115.
    Bernstein K, Vink JY, Fu XW, Wakita H, Danielsson J, Wapner R, et al. Calcium-activated chloride channels anoctamin 1 and 2 promote murine uterine smooth muscle contractility. Am J Obstet Gynecol. 2014;211(6):688.e1–10.CrossRefGoogle Scholar
  116. 116.
    Danielsson J, Vink J, Hyuga S, Fu XW, Funayama H, Wapner R, et al. Anoctamin channels in human myometrium: a novel target for tocolysis. Reprod Sci. 2018;25:1589–600. Scholar
  117. 117.
    Jones K, Shmygol A, Kupittayanant S, Wray S. Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes. Pflugers Arch. 2004;448(1):36–43.PubMedCrossRefGoogle Scholar
  118. 118.
    Yoshino M, Wang SY, Kao CY. Sodium and calcium inward currents in freshly dissociated smooth myocytes of rat uterus. J Gen Physiol. 1997;110(5):565–77.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Boyle MB, Heslip LA. Voltage-dependent Na+ channel mRNA expression in pregnant myometrium. Recept Channels. 1994;2(3):249–53.PubMedGoogle Scholar
  120. 120.
    Seda M, Pinto FM, Wray S, Cintado CG, Noheda P, Buschmann H, et al. Functional and molecular characterization of voltage-gated sodium channels in uteri from nonpregnant rats. Biol Reprod. 2007;77(5):855–63.PubMedCrossRefGoogle Scholar
  121. 121.
    Pinto FM, Cintado CG, Merida A, Hidalgo A, Candenas ML. Differential expression of amiloride-sensitive Na+ channel subunits messenger RNA in the rat uterus. Life Sci. 2000;66(22):Pl313–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Shmigol AV, Eisner DA, Wray S. Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic. J Physiol. 2001;531(Pt 3):707–13.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Putney JW. Forms and functions of store-operated calcium entry mediators, STIM and Orai. Adv Biol Regul. 2018;68:88–96.PubMedCrossRefGoogle Scholar
  124. 124.
    Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992;355(6358):353–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15(13):1235–41.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005;169(3):435–45.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–85.PubMedCrossRefGoogle Scholar
  128. 128.
    Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science. 2006;312(5777):1220–3.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, et al. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A. 2006;103(24):9357–62.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS. Local Ca(2)+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca(2)+ signals required for specific cell functions. PLoS Biol. 2011;9(3):e1001025.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM. Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol Hum Reprod. 2002;8(10):946–51.PubMedCrossRefGoogle Scholar
  132. 132.
    Davis FM, Janoshazi A, Janardhan KS, Steinckwich N, D’Agostin DM, Petranka JG, et al. Essential role of Orai1 store-operated calcium channels in lactation. Proc Natl Acad Sci U S A. 2015;112(18):5827–32.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci U S A. 1996;93(21):11699–704.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Feldman CH, Grotegut CA, Rosenberg PB. The role of STIM1 and SOCE in smooth muscle contractility. Cell Calcium. 2017;63:60–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Chin-Smith EC, Slater DM, Johnson MR, Tribe RM. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy. Front Physiol. 2014;5:169.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Blaustein MP, Chen L, Hamlyn JM, Leenen FH, Lingrel JB, Wier WG, et al. Pivotal role of alpha2 Na(+) pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol. 2016;594(21):6079–103.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Nakamura Y, Ohya Y, Abe I, Fujishima M. Sodium-potassium pump current in smooth muscle cells from mesenteric resistance arteries of the guinea-pig. J Physiol. 1999;519(Pt 1):203–12.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Wray S. Insights from physiology into myometrial function and dysfunction. Exp Physiol. 2015;100(12):1468–76.PubMedCrossRefGoogle Scholar
  139. 139.
    Moore ED, Etter EF, Philipson KD, Carrington WA, Fogarty KE, Lifshitz LM, et al. Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature. 1993;365(6447):657–60.PubMedCrossRefGoogle Scholar
  140. 140.
    Golovina V, Song H, James P, Lingrel J, Blaustein M. Regulation of Ca2+ signaling by Na+ pump alpha-2 subunit expression. Ann N Y Acad Sci. 2003;986:509–13.PubMedCrossRefGoogle Scholar
  141. 141.
    Wray S, Shmygol A. Role of the calcium store in uterine contractility. Semin Cell Dev Biol. 2007;18(3):315–20.PubMedCrossRefGoogle Scholar
  142. 142.
    Shull GE, Lingrel JB. Isolation and characterization of a cDNA for the catalytic subunit of the (Na+ + K+)-ATPase. Soc Gen Physiol Ser. 1987;41:301–21.PubMedGoogle Scholar
  143. 143.
    Martin-Vasallo P, Dackowski W, Emanuel JR, Levenson R. Identification of a putative isoform of the Na,K-ATPase beta subunit. Primary structure and tissue-specific expression. J Biol Chem. 1989;264(8):4613–8.PubMedGoogle Scholar
  144. 144.
    Floyd R, Mobasheri A, Martin-Vasallo P, Wray S. Na,K-ATPase isoforms in pregnant and nonpregnant rat uterus. Ann N Y Acad Sci. 2003;986:614–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Parkington HC, Tonta MA, Davies NK, Brennecke SP, Coleman HA. Hyperpolarization and slowing of the rate of contraction in human uterus in pregnancy by prostaglandins E2 and f2alpha: involvement of the Na+ pump. J Physiol. 1999;514(Pt 1):229–43.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Floyd RV, Wray S, Quenby S, Martin-Vasallo P, Mobasheri A. Expression and distribution of Na, K-ATPase isoforms in the human uterus. Reprod Sci. 2010;17(4):366–76.PubMedCrossRefGoogle Scholar
  147. 147.
    Floyd RV, Wray S, Martin-Vasallo P, Mobasheri A. Differential cellular expression of FXYD1 (phospholemman) and FXYD2 (gamma subunit of Na, K-ATPase) in normal human tissues: a study using high density human tissue microarrays. Ann Anat. 2010;192(1):7–16.PubMedCrossRefGoogle Scholar
  148. 148.
    Floyd RV, Mobasheri A, Wray S. Gestation changes sodium pump isoform expression, leading to changes in ouabain sensitivity, contractility, and intracellular calcium in rat uterus. Phys Rep. 2017;5(23):e13527.CrossRefGoogle Scholar
  149. 149.
    Maxwell CV, Tao QF, Seely EW, Repke JT, Graves SW. Regulation of the sodium pump in pregnancy-related tissues in preeclampsia. Am J Obstet Gynecol. 1998;179(1):28–34.PubMedCrossRefGoogle Scholar
  150. 150.
    Esplin MS, Fausett MB, Faux DS, Graves SW. Changes in the isoforms of the sodium pump in the placenta and myometrium of women in labor. Am J Obstet Gynecol. 2003;188(3):759–64.PubMedCrossRefGoogle Scholar
  151. 151.
    Tsai ML, Lee CL, Tang MJ, Liu MY. Preferential reduction of Na+/K+ ATPase alpha3 by 17beta-estradiol influences contraction frequency in rat uteri. Chin J Phys. 2000;43(1):1–8.Google Scholar
  152. 152.
    Graves SW. Sodium regulation, sodium pump function and sodium pump inhibitors in uncomplicated pregnancy and preeclampsia. Front Biosci. 2007;12:2438–46.PubMedCrossRefGoogle Scholar
  153. 153.
    Parkington HC, Coleman HA. Ionic mechanisms underlying action potentials in myometrium. Clin Exp Pharmacol Physiol. 1988;15(9):657–65.PubMedCrossRefGoogle Scholar
  154. 154.
    Parkington HC, Tonta MA, Brennecke SP, Coleman HA. Contractile activity, membrane potential, and cytoplasmic calcium in human uterine smooth muscle in the third trimester of pregnancy and during labor. Am J Obstet Gynecol. 1999;181(6):1445–51.PubMedCrossRefGoogle Scholar
  155. 155.
    Burdyga T, Borisova L, Burdyga AT, Wray S. Temporal and spatial variations in spontaneous Ca events and mechanical activity in pregnant rat myometrium. Eur J Obstet Gynecol Reprod Biol. 2009;144(Suppl 1):S25–32.PubMedCrossRefGoogle Scholar
  156. 156.
    Wray S, Arrowsmith S. Uterine smooth muscle. In: Hill JA, Olson EN, editors. Muscle: fundamental biology and mechanisms of disease. Boston, MA: Academic Press; 2012. p. 1207–16.CrossRefGoogle Scholar
  157. 157.
    Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J Neuroendocrinol. 2014;26(6):356–69.PubMedCrossRefGoogle Scholar
  158. 158.
    Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000;522(Pt 2):177–85.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Woodcock NA, Taylor CW, Thornton S. Prostaglandin F2alpha increases the sensitivity of the contractile proteins to Ca2+ in human myometrium. Am J Obstet Gynecol. 2006;195(5):1404–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Crichton CA, Taggart MJ, Wray S, Smith GL. Effects of pH and inorganic phosphate on force production in alpha-toxin-permeabilized isolated rat uterine smooth muscle. J Physiol. 1993;465:629–45.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kupittayanant S, Burdyga T, Wray S. The effects of inhibiting Rho-associated kinase with Y-27632 on force and intracellular calcium in human myometrium. Pflugers Arch. 2001;443(1):112–4.PubMedCrossRefGoogle Scholar
  162. 162.
    Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium. 2007;42(4–5):467–76.PubMedCrossRefGoogle Scholar
  163. 163.
    Wray S, Burdyga T, Noble K. Calcium signalling in smooth muscle. Cell Calcium. 2005;38(3–4):397–407.PubMedCrossRefGoogle Scholar
  164. 164.
    Penniston JT, Enyedi A. Modulation of the plasma membrane Ca2+ pump. J Membr Biol. 1998;165(2):101–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Shmigol AV, Eisner DA, Wray S. The role of the sarcoplasmic reticulum as a Ca2+ sink in rat uterine smooth muscle cells. J Physiol. 1999;520(Pt 1):153–63.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Taggart MJ, Wray S. Agonist mobilization of sarcoplasmic reticular calcium in smooth muscle: functional coupling to the plasmalemmal Na+/Ca2+ exchanger? Cell Calcium. 1997;22(5):333–41.PubMedCrossRefGoogle Scholar
  167. 167.
    Juhaszova M, Blaustein MP. Distinct distribution of different Na+ pump alpha subunit isoforms in plasmalemma. Physiological implications. Ann N Y Acad Sci. 1997;834:524–36.PubMedCrossRefGoogle Scholar
  168. 168.
    Wynn RM. Cellular biology of the uterus. New York: Appleton-Century-Crofts; 1967. p. xi, 524 p.Google Scholar
  169. 169.
    Wray S. The role of mechanical and hormonal stimuli on uterine involution in the rat. J Physiol. 1982;328:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Shynlova O, Kwong R, Lye SJ. Mechanical stretch regulates hypertrophic phenotype of the myometrium during pregnancy. Reproduction. 2010;139(1):247–53.PubMedCrossRefGoogle Scholar
  171. 171.
    Shynlova O, Tsui P, Jaffer S, Lye SJ. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol. 2009;144(Suppl 1):S2–10.PubMedCrossRefGoogle Scholar
  172. 172.
    Shynlova O, Tsui P, Dorogin A, Chow M, Lye SJ. Expression and localization of alpha-smooth muscle and gamma-actins in the pregnant rat myometrium. Biol Reprod. 2005;73(4):773–80.PubMedCrossRefGoogle Scholar
  173. 173.
    Word RA, Stull JT, Casey ML, Kamm KE. Contractile elements and myosin light chain phosphorylation in myometrial tissue from nonpregnant and pregnant women. J Clin Invest. 1993;92(1):29–37.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Sparrow MP, Mohammad MA, Arner A, Hellstrand P, Ruegg JC. Myosin composition and functional properties of smooth muscle from the uterus of pregnant and non-pregnant rats. Pflugers Arch. 1988;412(6):624–33.PubMedCrossRefGoogle Scholar
  175. 175.
    Dawson MJ, Wray S. The effects of pregnancy and parturition on phosphorus metabolites in rat uterus studied by 31P nuclear magnetic resonance. J Physiol. 1985;368:19–31.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Almohanna A, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol. 2018;315:H756–70.PubMedCrossRefGoogle Scholar
  177. 177.
    Lynch RM, Paul RJ. Compartmentation of carbohydrate metabolism in vascular smooth muscle. Am J Phys. 1987;252(3 Pt 1):C328–34.CrossRefGoogle Scholar
  178. 178.
    Paul RJ, Krisanda JM, Lynch RM. Vascular smooth muscle energetics. J Cardiovasc Pharmacol. 1984;6(Suppl 2):S320–7.PubMedCrossRefGoogle Scholar
  179. 179.
    Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA. The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci. 2007;64(23):3069–83.PubMedCrossRefGoogle Scholar
  180. 180.
    Wray S. The effects of metabolic inhibition on uterine metabolism and intracellular pH in the rat. J Physiol. 1990;423:411–23.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 2000;19(15):3896–904.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Hanley JA, Weeks A, Wray S. Physiological increases in lactate inhibit intracellular calcium transients, acidify myocytes and decrease force in term pregnant rat myometrium. J Physiol. 2015;593(20):4603–14.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Larcombe-McDouall J, Buttell N, Harrison N, Wray S. In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle. J Physiol. 1999;518(Pt 3):783–90.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Shmigol AV, Smith RD, Taggart MJ, Wray S, Eisner DA. Changes of pH affect calcium currents but not outward potassium currents in rat myometrial cells. Pflugers Arch. 1995;431(1):135–7.PubMedCrossRefGoogle Scholar
  185. 185.
    Taggart MJ, Burdyga T, Heaton R, Wray S. Stimulus-dependent modulation of smooth muscle intracellular calcium and force by altered intracellular pH. Pflugers Arch. 1996;432(5):803–11.PubMedCrossRefGoogle Scholar
  186. 186.
    Alotaibi M, Arrowsmith S, Wray S. Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses. Proc Natl Acad Sci U S A. 2015;112(31):9763–8.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Mittal P, Romero R, Tarca AL, Draghici S, Nhan-Chang C-L, Chaiworapongsa T, et al. A molecular signature of an arrest of descent in human parturition. Am J Obstet Gynecol. 2011;204(2):177.e15–33.CrossRefGoogle Scholar
  188. 188.
    Brubaker D, Barbaro A, Chance MR, Mesiano S. A dynamical systems model of progesterone receptor interactions with inflammation in human parturition. BMC Syst Biol. 2016;10(1):79.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Arkinstall SJ, Jones CT. Pregnancy suppresses G protein coupling to phosphoinositide hydrolysis in guinea pig myometrium. Am J Phys. 1990;259(1 Pt 1):E57–65.Google Scholar
  190. 190.
    Smith R, Imtiaz M, Banney D, Paul JW, Young RC. Why the heart is like an orchestra and the uterus is like a soccer crowd. Am J Obstet Gynecol. 2015;213(2):181–5.PubMedCrossRefGoogle Scholar
  191. 191.
    Frey HA, Klebanoff MA. The epidemiology, etiology, and costs of preterm birth. Semin Fetal Neonatal Med. 2016;21(2):68–73.PubMedCrossRefGoogle Scholar
  192. 192.
    Ryan JG, Dogbey E. Preterm births: a global health problem. MCN Am J Matern Child Nurs. 2015;40(5):278–83.PubMedCrossRefGoogle Scholar
  193. 193.
    Turton P, Neilson JP, Quenby S, Burdyga T, Wray S. A short review of twin pregnancy and how oxytocin receptor expression may differ in multiple pregnancy. Eur J Obstet Gynecol Reprod Biol. 2009;144(Suppl 1):S40–4.PubMedCrossRefGoogle Scholar
  194. 194.
    Power ML, Bowman ME, Smith R, Ziegler TE, Layne DG, Schulkin J, et al. Pattern of maternal serum corticotropin-releasing hormone concentration during pregnancy in the common marmoset (Callithrix jacchus). Am J Primatol. 2006;68(2):181–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Rubens CE, Sadovsky Y, Muglia L, Gravett MG, Lackritz E, Gravett C. Prevention of preterm birth: harnessing science to address the global epidemic. Sci Transl Med. 2014;6(262):262sr5.PubMedCrossRefGoogle Scholar
  196. 196.
    Quenby S, Pierce SJ, Brigham S, Wray S. Dysfunctional labor and myometrial lactic acidosis. Obstet Gynecol. 2004;103(4):718–23.PubMedCrossRefGoogle Scholar
  197. 197.
    Wiberg-Itzel E, Wray S, Akerud H. A randomized controlled trial of a new treatment for labor dystocia. J Matern Fetal Neonatal Med. 2018;31(17):2237–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Physiology, Harris-Wellbeing Preterm Birth Centre, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK

Personalised recommendations