Skip to main content

Full-Scale Simulation of Indoor Humidity and Moisture Buffering Properties of Clay

  • Chapter
  • First Online:
Earthen Dwellings and Structures

Abstract

It is important to control indoor humidity level in buildings as it influences occupant’s health and comfort. Some materials, when exposed to the indoor environment, help regulate relative humidity levels due to their capacity to absorb and desorb water vapour. The potential of earthen plasters to improve indoor comfort was investigated through experimentation and simulation. Results of clay moisture buffering capacity and computational simulation of the diurnal moisture variation in a clay plastered test room are discussed. This study compares measurement obtained in the laboratory with simulations output and identifies a discrepancy between the two methods in the quantification of the moisture buffering potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arundel AV, Sterling EM, Biggin JH, Sterling TD (1986) Indirect health effects of relative humidity in indoor environments. Environ Health Perspect 65:351

    Google Scholar 

  • ÄŒerný R, Kunca A, Tydlitát V, Drchalová J, Rovnaníková P (2006) Effect of pozzolanic admixtures on mechanical, thermal and hygric properties of lime plasters. Constr Build Mater 20(10):849–857. https://doi.org/10.1016/j.conbuildmat.2005.07.002

    Article  Google Scholar 

  • Delgado JMPQ, Barreira E, Ramos NMM, de Freitas VP (2013) Inputs for hygrothermal simulation tools. Appl Sci Technol 7–20. https://doi.org/10.1007/978-3-642-35003-0_2

    Google Scholar 

  • Faria P, dos Santos T, Aubert J-E (2016) Experimental characterization of an earth eco-efficient plastering mortar. J Mater Civ Eng 28(1):1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001363

    Article  Google Scholar 

  • ISO 24353 (2008) Hygrothermal performance of building materials and products—determination of moisture adsorption/desorption properties in response to humidity variation. Internal Standardization Organization (ISO)

    Google Scholar 

  • JIS A 1470-1 (2002) Test method of adsorption/desorption efficiency for building materials to regulate an indoor humidity-part 1

    Google Scholar 

  • Künzel HM (1995) Simultaneous heat and moisture transport in building components. One-and Two-Dimensional Calculation Using Simple Parameters. IRB-Verlag Stuttgart

    Google Scholar 

  • Latif E, Lawrence M, Shea A, Walker P (2016) In situ assessment of the fabric and energy performance of five conventional and non-conventional wall systems using comparative coheating tests. Build Environ 109:68–81. https://doi.org/10.1016/j.buildenv.2016.09.017

    Article  Google Scholar 

  • Liuzzi S, Hall MR, Stefanizzi P, Casey SP (2013) Hygrothermal behaviour and relative humidity buffering of unfired and hydrated lime-stabilised clay composites in a Mediterranean climate. Build Environ 61:82–92. https://doi.org/10.1016/j.buildenv.2012.12.006

    Article  Google Scholar 

  • Maskell D, Thomson A, Walker P, Lemke M (2018) Determination of optimal plaster thickness for moisture buffering of indoor air. Build Environ 130:143–150. https://doi.org/10.1016/j.buildenv.2017.11.045

    Article  Google Scholar 

  • McGregor FAP (2014) Moisture buering capacity of unfired clay masonry. University of Bath

    Google Scholar 

  • Rode C, Peuhkuri R, Mortensen LH, Hansens K, Time B, Gustavsen A, Ojanen T, Ahonen J (2005) Moisture buffering of building materials. Department of Civil Engineering Technical, University of Denmark

    Google Scholar 

  • Rode C, Peuhkuri R, Time B, Svennberg K, Ojanen T (2007) Moisture buffer value of building materials. J ASTM Int 4(5):100369. https://doi.org/10.1520/JAI100369

    Article  Google Scholar 

  • Thomson A, Maskell D, Walker P, Lemke M, Shea A, Lawrence M (2015) Improving the hygrothermal properties of clay plasters. In: 15th international conference on non-conventional materials and technologies, 8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Cascione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cascione, V., Maskell, D., Shea, A., Walker, P. (2019). Full-Scale Simulation of Indoor Humidity and Moisture Buffering Properties of Clay. In: Reddy, B., Mani, M., Walker, P. (eds) Earthen Dwellings and Structures. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-5883-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5883-8_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5882-1

  • Online ISBN: 978-981-13-5883-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics