Skip to main content

Fundamentals of Wireless Network Analysis

  • Chapter
  • First Online:
Stochastic Geometry Analysis of Multi-Antenna Wireless Networks
  • 661 Accesses

Abstract

In this chapter, the fundamentals of wireless network analysis via stochastic geometry are introduced. The Poisson network model is first presented, and key performance metrics in wireless networks are defined. By modeling a wireless network as a Poisson point process, the distribution of the aggregate interference is characterized using the Laplace transform, which is a key analytical step leading to tractable results of the signal-to-interference-plus-noise ratio (SINR) distribution. Sample results are presented for coverage and rate analysis in single-antenna cellular and ad hoc networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The mathematical definition of Lebesgue measure is not provided here but can be well found in [21, 24], while there are some special cases for d that are easy to understand and will be further used in this monograph. When \(d=1\), \(v_1(\cdot )=l\) is the length measure; when \(d=2\), \(v_2(\cdot )=A\) is the area measure; when \(d=3\), \(v_3(\cdot )=V\) is the volume measure.

  2. 2.

    Here we pick the two-dimensional Poisson hole process as the example for the ease of presentation.

References

  1. E.N. Gilbert, Random plane networks. J. Soc. Ind. Appl. Math. 9(4), 533–543 (1961)

    Article  MathSciNet  Google Scholar 

  2. L. Kleinrock, J. Silvester, Optimum transmission radii for packet radio networks or why six is a magic number, in Conference record: national telecommunications conference, (Birmingham, Alabama), pp. 4.3.1-4.3.5, Dec. 1978

    Google Scholar 

  3. L. Kleinrock, J. Silvester, Spatial reuse in multihop packet radio networks. Proc. IEEE 75, 156–167 (1987)

    Google Scholar 

  4. H. Takagi, L. Kleinrock, Optimal transmission ranges for randomly distributed packet radio terminals. IEEE Trans. Commun. 32, 246–257 (1984)

    Google Scholar 

  5. T.-C. Hou, V. Li, Transmission range control in multihop packet radio networks. IEEE Trans. Commun. 34, 38–44 (1986)

    Google Scholar 

  6. F. Baccelli, B. Blaszczyszyn, P. Muhlethaler, Stochastic analysis of spatial and opportunistic ALOHA. IEEE J. Sel. Areas Commun. 27, 1105–1119 (2009)

    Google Scholar 

  7. M.Z. Win, P.C. Pinto, L.A. Shepp, A mathematical theory of network interference and its applications. Proc. IEEE 97, 205–230 (2009)

    Google Scholar 

  8. R.H.Y. Louie, M.R. McKay, I.B. Collings, Open-loop spatial multiplexing and diversity communications in ad hoc networks. IEEE Trans. Inf. Theor. 57, 317–344 (2011)

    Google Scholar 

  9. S.P. Weber, X. Yang, J.G. Andrews, G. de Veciana, Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans Inf. Theor. 51, 4091–4102 (2005)

    Google Scholar 

  10. A.M. Hunter, J.G. Andrews, S. Weber, Transmission capacity of ad hoc networks with spatial diversity. IEEE Trans. Wirel. Commun. 7, 5058–5071 (2008)

    Google Scholar 

  11. M. Kountouris, J.G. Andrews, Transmission capacity scaling of SDMA in wireless ad hoc networks, in Proceedings 2009 IEEE Information Theory Workshop, (Volos, Greece), pp. 534-538, Oct. 2009

    Google Scholar 

  12. M. Haenggi, J.G. Andrews, F. Baccelli, O. Dousse, M. Franceschetti, Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27, 1029–1046 (2009)

    Google Scholar 

  13. J.G. Andrews, R.K. Ganti, M. Haenggi, N. Jindal, S. Weber, A primer on spatial modeling and analysis in wireless networks. IEEE Commun. Mag. 48, 156–163 (2010)

    Google Scholar 

  14. F. Baccelli, M. Klein, M. Lebourges, S. Zuyev, Stochastic geometry and architecture of communication networks. Telecommun. Syst. 7, 209–227 (1997)

    Google Scholar 

  15. F. Baccelli, S. Zuyev, Stochastic geometry models of mobile communication networks, in Frontiers in queueing (CRC Press, 1997), pp. 227-243

    Google Scholar 

  16. J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59, 3122–3134 (2011)

    Google Scholar 

  17. M. Haenggi, R.K. Ganti, Interference in large wireless networks (vol. 3. Now Publishers Inc., 2009)

    Google Scholar 

  18. F. Baccelli, B. BÅ‚aszczyszyn, Stochastic geometry and wireless networks: volume I theory (vol. 3. Now Publishers Inc., 2009)

    Google Scholar 

  19. F. Baccelli, B. BÅ‚aszczyszyn, Stochastic geometry and wireless networks: volume II applications (vol. 4. Now Publishers Inc., 2009)

    Google Scholar 

  20. S. Weber, J.G. Andrews, Transmission capacity of wireless networks (vol. 5. Now Publishers Inc., 2012)

    Google Scholar 

  21. M. Haenggi, Stochastic geometry for wireless networks (Cambridge University Press, Cambridge, U.K., 2012)

    Book  Google Scholar 

  22. S. Mukherjee, Analytical modeling of heterogeneous cellular networks (Cambridge University Press, 2014)

    Google Scholar 

  23. H. ElSawy, E. Hossain, M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surv. Tuts. 15, 996–1019 (2013)

    Google Scholar 

  24. S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic geometry and its applications (Wiley, 2013)

    Google Scholar 

  25. C. Li, J. Zhang, K.B. Letaief, Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Trans. Wirel. Commun. 13, 2505–2517 (2014)

    Google Scholar 

  26. N. Devroye, M. Vu, V. Tarokh, Cognitive radio networks. IEEE Signal Process. Mag. 25, 12–23 (2008)

    Google Scholar 

  27. Z. Hasan, H. Boostanimehr, V.K. Bhargava, Green cellular networks: a survey, some research issues and challenges. IEEE Commun. Surv. Tuts. 13, 524–540 (2011)

    Google Scholar 

  28. J. Xu, L. Qiu, Energy efficiency optimization for MIMO broadcast channels. IEEE Trans. Wirel. Commun. 12, 690–701 (2013)

    Google Scholar 

  29. D. Nguyen, L.-N. Tran, P. Pirinen, M. Latva-aho, Precoding for full duplex multiuser MIMO system: spectral and energy efficiency maximization. IEEE Trans. Signal Process. 61, 4038–4050 (2013)

    Google Scholar 

  30. T.D. Novlan, H.S. Dhillon, J.G. Andrews, Analytical modeling of uplink cellular networks. IEEE Trans. Wirel. Commun. 12, 2669–2679 (2013)

    Google Scholar 

  31. Y. Wang, M. Haenggi, Z. Tan, The meta distribution of the SIR for cellular networks with power control. IEEE Trans. Commun. 66, 1745–1757 (2018)

    Google Scholar 

  32. D. Zwillinger, Table of integrals, series, and products (Elsevier, Amsterdam, Netherlands, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, X., Li, C., Zhang, J., Letaief, K.B. (2019). Fundamentals of Wireless Network Analysis. In: Stochastic Geometry Analysis of Multi-Antenna Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-13-5880-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5880-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5879-1

  • Online ISBN: 978-981-13-5880-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics