Skip to main content

Neuroimaging in Neurological Emergencies

  • Chapter
  • First Online:
Emergencies in Neurology

Abstract

Imaging plays a key role in supporting clinical diagnosis in acute neurological emergencies and guiding clinical management of these patients. This chapter gives an overview of the imaging features in different acute neurological syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36:557–65.

    Article  CAS  PubMed  Google Scholar 

  2. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  PubMed  Google Scholar 

  3. Lee TC, Bartlett ES, Fox AJ, et al. The hypodense artery sign. Am J Neuroradiol. 2005;26:2027–9.

    PubMed  PubMed Central  Google Scholar 

  4. Tomsick TA, Brott TG, Olinger CP, et al. Hyperdense middle cerebral artery: incidence and quantitative significance. Neuroradiology. 1989;31:312–5.

    Article  CAS  PubMed  Google Scholar 

  5. Leys D, Pruvo JP, Godefroy O, et al. Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke. 1992;23:317–24.

    Article  CAS  PubMed  Google Scholar 

  6. Barber PA, Demchuk AM, Zhang J, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Aspects study group. Alberta Stroke programme early CT score. Lancet. 2000;355:1670–4.

    Article  CAS  PubMed  Google Scholar 

  7. Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta Stroke program early CT score (ASPECTS) for assessing CT scans in patients with acute stroke. Am J Neuroradiol. 2001;22:1534–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dzialowski I, Hill MD, Coutts SB, et al. Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta stroke program early CT score in ECASS II. Stroke. 2006;37:973–8.

    Article  PubMed  Google Scholar 

  9. Bhatia R, Bal SS, Shobha N, et al. CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke. 2011;42:1575–80.

    Article  PubMed  Google Scholar 

  10. Barnwell SL, Clark WM, Nguyen TT, et al. Safety and efficacy of delayed intraarterial urokinase therapy with mechanical clot disruption for thromboembolic stroke. Am J Neuroradiol. 1994;15:1817–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeumer H, Freitag HJ, Zanella F, et al. Local intra-arterial fibrinolytic therapy in patients with stroke: urokinase versus recombinant tissue plasminogen activator (r-TPA). Neuroradiology. 1993;35:159–62.

    Article  CAS  PubMed  Google Scholar 

  12. Menon BK, d’Esterre CD, Qazi EM, et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology. 2015;275:510–20.

    Article  PubMed  Google Scholar 

  13. Seker F, Potreck A, Möhlenbruch M, et al. Comparison of four different collateral scores in acute ischemic stroke by CT angiography. J NeuroIntervent Surg. 2016;8:1116–8.

    Article  Google Scholar 

  14. Ezzeddine MA, Lev MH, Mcdonald CT, et al. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke. 2002;33:959–66.

    Article  PubMed  Google Scholar 

  15. Kloska SP, Nabavi DG, Gaus C, et al. Acute stroke assessment with CT: do we need multimodal evaluation? Radiology. 2004;233:79–86.

    Article  PubMed  Google Scholar 

  16. Wintermark M, Fischbein NJ, Smith WS, et al. Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. Am J Neuroradiol. 2005;26:104–12.

    PubMed  PubMed Central  Google Scholar 

  17. Schramm P, Schellinger PD, Klotz E, et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours' duration. Stroke. 2004;35:1652–8.

    Article  PubMed  Google Scholar 

  18. Wintermark M, Reichhart M, Thiran JP, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002;51:417–32.

    Article  PubMed  Google Scholar 

  19. Wintermark M, Meuli R, Browaeys P, et al. Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology. 2007;68:694–7.

    Article  CAS  PubMed  Google Scholar 

  20. Parsons MW, Pepper EM, Bateman GA, et al. Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology. 2007;68:730–6.

    Article  CAS  PubMed  Google Scholar 

  21. Tan JC, Dillon WP, Liu S, et al. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol. 2007;61:533–43.

    Article  PubMed  Google Scholar 

  22. Schaefer PW, Barak ER, Kamalian S, et al. Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke. 2008;39:2986–92.

    Article  PubMed  Google Scholar 

  23. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC, Khalessi AA, Kidwell CS, Meschia JF, Ovbiagele B, Yavagal DR, American Heart Association Stroke Council. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:3020–35.

    Article  CAS  PubMed  Google Scholar 

  24. Bryan RN, Levy LM, Whitlow WD, et al. Diagnosis of acute cerebral infarction: comparison of CT and MR imaging. Am J Neuroradiol. 1991;12:611–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mueller DP, Yuh WT, Fisher DJ, et al. Arterial enhancement in acute cerebral ischemia: clinical and angiographic correlation. Am J Neuroradiol. 1993;14:661–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke. 2002;33:95–8.

    Article  PubMed  Google Scholar 

  27. Wong KS, Chan YL, Liu JY, et al. Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology. 2003;60:511–3.

    Article  CAS  PubMed  Google Scholar 

  28. Chalela JA, Kang DW, Warach S. Multiple cerebral microbleeds: MRI marker of a diffuse hemorrhage-prone state. J Neuroimaging. 2004;14:54–7.

    PubMed  Google Scholar 

  29. Kakuda W, Thijs VN, Lansberg MG, et al. Clinical importance of microbleeds in patients receiving IV thrombolysis. Neurology. 2005;65:1175–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans. Am J Neuroradiol. 1992;13:1097–102.. discussion 1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez RG, Schaefer PW, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999;210:155–62.

    Article  CAS  PubMed  Google Scholar 

  32. Lovblad KO, Laubach HJ, Baird AE, et al. Clinical experience with diffusion-weighted MR in patients with acute stroke. Am J Neuroradiol. 1998;19:1061–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34:2729–35.

    Article  PubMed  Google Scholar 

  34. Jansen O, Schellinger P, Fiebach J, et al. Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI. Lancet. 1999;353:2036–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sobesky J, Zaro Weber O, Lehnhardt FG, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke. 2005;36:980–5.

    Article  PubMed  Google Scholar 

  36. Schellinger PD, Thomalla G, Fiehler J, et al. MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke. 2007;38:2640–5.

    Article  PubMed  Google Scholar 

  37. Thomalla G, Schwark C, Sobesky J, et al. Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a german multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS TPA trials. Stroke. 2006;37:852–8.

    Article  PubMed  Google Scholar 

  38. Ribo M, Molina CA, Rovira A, et al. Safety and efficacy of intravenous tissue plasminogen activator stroke treatment in the 3- to 6-hour window using multimodal transcranialdoppler/MRI selection protocol. Stroke. 2005;36:602–6.

    Article  CAS  PubMed  Google Scholar 

  39. Thomalla G, Kruetzelmann A, Siemonsen S, et al. Clinical and tissue response to intravenous thrombolysis in tandem internal carotid artery/middle cerebral artery occlusion: an MRI study. Stroke. 2008;39:1616–8.

    Article  PubMed  Google Scholar 

  40. Fiehler J, Albers GW, Boulanger JM, et al. Bleeding risk analysis in stroke imaging before thrombolysis (brasil): pooled analysis of t2*-weighted magnetic resonance imaging data from 570 patients. Stroke. 2007;38:2738–44.

    Article  PubMed  Google Scholar 

  41. Singer OC, Humpich MC, Fiehler J, et al. Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol. 2008;63:52–60.

    Article  PubMed  Google Scholar 

  42. Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10(11):978–86. https://doi.org/10.1016/S1474-4422(11)70192-2.

    Article  PubMed  Google Scholar 

  43. Azizyan A, Sanossian N, Mogensen MA, Liebeskind DS. Fluid-attenuated inversion recovery vascular hyperintensities: an important imaging marker for Cerebrovascular disease. Am J Neuroradiol. 2011;32:1771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee KY, Latour LL, Luby M, et al. Distal hyperintense vessels on FLAIR: an MRI marker for collateral circulation in acute stroke? Neurology. 2009;72:1134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim BJ, Kang HG, Kim H-J, Ahn S-H, Kim NY, Warach S, Kang D-W. Magnetic resonance imaging in acute ischemic stroke treatment. J Stroke. 2014;16(3):131–45.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mullins ME, Schaefer PW, Sorensen AG, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology. 2002;224:353–60.

    Article  PubMed  Google Scholar 

  47. Barber PA, Darby DG, Desmond PM, et al. Identification of major ischemic change. Diffusion-weighted imaging versus computed tomography. Stroke. 1999;30:2059–65.

    Article  CAS  PubMed  Google Scholar 

  48. Wessels T, Rottger C, Jauss M, et al. Identification of embolic stroke patterns by diffusion-weighted MRI in clinically defined lacunar stroke syndromes. Stroke. 2005;36:757–61.

    Article  PubMed  Google Scholar 

  49. Saur D, Kucinski T, Grzyska U, et al. Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. Am J Neuroradiol. 2003;24:878–85.

    PubMed  PubMed Central  Google Scholar 

  50. Brott T, Broderick J, Kothari R, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.

    Article  CAS  PubMed  Google Scholar 

  51. Kim J, Smith A, Hemphill JC III, et al. Contrast extravasation on CT predicts mortality in primary intracerebral hemorrhage. Am J Neuroradiol. 2008;29:520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. King JT Jr. Epidemiology of aneurysmal subarachnoid hemorrhage. Neuroimaging Clin N Am. 1997;7:659–68.

    PubMed  Google Scholar 

  53. Van der Wee N, Rinkel GJ, Hasan D, et al. Detection of subarachnoid haemorrhage on early CT: is lumbar puncture still needed after a negative scan? J Neurol Neurosurg Psychiatry. 1995;58:357–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sames TA, Storrow AB, Finkelstein JA, et al. Sensitivity of new-generation computed tomography in subarachnoid hemorrhage. Acad Emerg Med. 1996;3:16–20.

    Article  CAS  PubMed  Google Scholar 

  55. Edlow JA. Diagnosis of subarachnoid hemorrhage. Neurocrit Care. 2005;2:99–109.

    Article  PubMed  Google Scholar 

  56. Van Gijn J, Van Dongen KJ. The time course of aneurysmal haemorrhage on computed tomograms. Neuroradiology. 1982;23:153–6.

    Article  PubMed  Google Scholar 

  57. Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  58. Avrahami E, Katz R, Rabin A, et al. CT diagnosis of non-traumatic subarachnoid haemorrhage in patients with brain edema. Eur J Radiol. 1998;28:222–5.

    Article  CAS  PubMed  Google Scholar 

  59. Wiesmann M, Mayer TE, Yousry I, et al. Detection of hyperacute subarachnoid hemorrhage of the brain by using magnetic resonance imaging. J Neurosurg. 2002;96:684–9.

    Article  PubMed  Google Scholar 

  60. Yuan MK, Lai PH, Chen JY, et al. Detection of subarachnoid hemorrhage at acute and subacute/chronic stages: comparison of four magnetic resonance imaging pulse sequences and computed tomography. J Chin Med Assoc. 2005;68:131–7.

    Article  PubMed  Google Scholar 

  61. Noguchi K, Ogawa T, Seto H, et al. Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology. 1997;203:257–62.

    Article  CAS  PubMed  Google Scholar 

  62. Cioffi F, Pasqualin A, Cavazzani P, et al. Subarachnoid haemorrhage of unknown origin: clinical and tomographical aspects. Acta Neurochir (Wien). 1989;97:31–9.

    Article  CAS  Google Scholar 

  63. Huston J III, Nichols DA, Luetmer PH, et al. Blinded prospective evaluation of sensitivity of mr angiography to known intracranial aneurysms: importance of aneurysm size. AJNR Am J Neuroradiol. 1994;15:1607–14.

    PubMed  PubMed Central  Google Scholar 

  64. Anzalone N, Triulzi F, Scotti G. Acute subarachnoid haemorrhage: 3D time-of-flight MR angiography versus intra-arterial digital angiography. Neuroradiology. 1995;37:257–61.

    Article  CAS  PubMed  Google Scholar 

  65. Atlas SW. Magnetic resonance imaging of intracranial aneurysms. Neuroimaging Clin N Am. 1997;7:709–20.

    CAS  PubMed  Google Scholar 

  66. Korogi Y, Takahashi M, Katada K, et al. Intracranial aneurysms: detection with three-dimensional CT angiography with volume rendering—comparison with conventional angiographic and surgical findings. Radiology. 1999;211:497–506.

    Article  CAS  PubMed  Google Scholar 

  67. Alberico RA, Patel M, Casey S, et al. Evaluation of the circle of Willis with three-dimensional CT angiography in patients with suspected intracranial aneurysms. Am J Neuroradiol. 1995;16:1571–8.. discussion 1579–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vieco PT, Shuman WP, Alsofrom GF, et al. Detection of circle of Willis aneurysms in patients with acute subarachnoid hemorrhage: a comparison of CT angiography and digital subtraction angiography. Am J Roentgenol. 1995;165:425–30.

    Article  CAS  Google Scholar 

  69. Virapongse C, Cazenave C, Quisling R, et al. The empty delta sign: frequency and significance in 76 cases of dural sinus thrombosis. Radiology. 1987;162:779–85.

    Article  CAS  PubMed  Google Scholar 

  70. Cure JK, van Tassel P. Congenital and acquired abnormalities of the dural venous sinuses. Semin Ultrasound CT MR. 1994;15:520–39.

    Article  CAS  PubMed  Google Scholar 

  71. Shinohara Y, Yoshitoshi M, Yoshii F. Appearance and disappearance of empty delta sign in superior sagittal sinus thrombosis. Stroke. 1986;17:1282–4.

    Article  CAS  PubMed  Google Scholar 

  72. Tsai FY, Wang AM, Matovich VB, et al. MR staging of acute dural sinus thrombosis: correlation with venous pressure measurements and implications for treatment and prognosis. Am J Neuroradiol. 1995;16:1021–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dormont D, Anxionnat R, Evrard S, et al. MRI in cerebral venous thrombosis. J Neuroradiol. 1994;21:81–99.

    CAS  PubMed  Google Scholar 

  74. Leach JL, Fortuna RB, Jones BV, et al. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26(Suppl 1):S19–41; [discussion s42–s13]

    Article  PubMed  Google Scholar 

  75. Farb RI, Scott JN, Willinsky RA, et al. Intracranial venous system: gadolinium-enhanced three-dimensional MR venography with auto-triggered elliptic centric-ordered sequence—initial experience. Radiology. 2003;226:203–9.

    Article  PubMed  Google Scholar 

  76. Ozsvath RR, Casey SO, Lustrin ES, et al. Cerebral venography: comparison of CT and MR projection venography. Am J Roentgenol. 1997;169:1699–707.

    Article  CAS  Google Scholar 

  77. Casey SO, Alberico RA, Patel M, et al. Cerebral CT venography. Radiology. 1996;198:163–70.

    Article  CAS  PubMed  Google Scholar 

  78. Cure JK, van Tassel P, Smith MT. Normal and variant anatomy of the dural venous sinuses. Semin Ultrasound CT MR. 1994;15:499–519.

    Article  CAS  PubMed  Google Scholar 

  79. Widjaja E, Griffiths PD. Intracranial MR venography in children: normal anatomy and variations. Am J Neuroradiol. 2004;25:1557–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Willinsky R, Goyal M, Terbrugge K, et al. Tortuous, engorged pial veins in intracranial duralarteriovenous fistulas: correlations with presentation, location, and MR findings in 122 patients. Am J Neuroradiol. 1999;20:1031–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee SK, Terbrugge KG. Cerebral venous thrombosis in adults: the role of imaging evaluation and management. Neuroimaging Clin N Am. 2003;13:139–52.

    Article  PubMed  Google Scholar 

  82. Keiper MD, Ng SE, Atlas SW, et al. Subcortical hemorrhage: marker for radiographically occult cerebral vein thrombosis on CT. J Comput Assist Tomogr. 1995;19:527–31.

    Article  CAS  PubMed  Google Scholar 

  83. Forbes KP, Pipe JG, Heiserman JE. Evidence for cytotoxic edema in the pathogenesis of cerebral venous infarction. Am J Neuroradiol. 2001;22:450–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ducreux D, Oppenheim C, Vandamme X, et al. Diffusion-weighted imaging patterns of brain damage associated with cerebral venous thrombosis. Am J Neuroradiol. 2001;22:261–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Poon CS, Chang JK, Swarnkar A, et al. Radiologic diagnosis of cerebral venous thrombosis: pictorial review. Am J Roentgenol. 2007;189(6 Suppl):S64–75.

    Article  Google Scholar 

  86. Morgado C, Ruivo N. Imaging meningo-encephalic tuberculosis. Eur J Radiol. 2005;55:188–92.

    Article  PubMed  Google Scholar 

  87. Jinkins JR, Gupta R, Chang KH, et al. MR imaging of central nervous system tuberculosis. Radiol Clin North Am. 1995;33:771–86.

    CAS  PubMed  Google Scholar 

  88. Whiteman ML. Neuroimaging of central nervous system tuberculosis in HIV-infected patients. Neuroimaging Clin N Am. 1997;7:199–214.

    CAS  PubMed  Google Scholar 

  89. De Castro CC, de Barros NG, Campos ZM, et al. CT scans of cranial tuberculosis. Radiol Clin North Am. 1995;33:753–69.

    PubMed  Google Scholar 

  90. Gupta RK, Prakash M, Mishra AM, et al. Role of diffusion weighted imaging in differentiation of intracranial tuberculoma and tuberculous abscess from cysticercus granulomas—a report of more than 100 lesions. Eur J Radiol. 2005;55:384–92.

    Article  PubMed  Google Scholar 

  91. Gaviani P, Schwartz RB, Hedley-Whyte ET, et al. Diffusion-weighted imaging of fungal cerebral infection. Am J Neuroradiol. 2005;26:1115–21.

    PubMed  PubMed Central  Google Scholar 

  92. Gupta RK, Vatsal DK, Husain N, et al. Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. Am J Neuroradiol. 2001;22:1503–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Garg M, Gupta RK, Husain M, et al. Brain abscesses: etiologic categorization with in vivo proton MR spectroscopy. Radiology. 2004;230:519–27.

    Article  PubMed  Google Scholar 

  94. Luthra G, Parihar A, Nath K, et al. Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. Am J Neuroradiol. 2007;28:1332–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wasay M, Mekan SF, Khelaeni B, et al. Extra temporal involvement in herpes simplex encephalitis. Eur J Neurol. 2005;12:475–9.

    Article  CAS  PubMed  Google Scholar 

  96. Demaerel P, Wilms G, Robberecht W, et al. MRI of herpes simplex encephalitis. Neuroradiology. 1992;34:490–3.

    Article  CAS  PubMed  Google Scholar 

  97. Gumus H, Kumandas S, Per H, et al. Unusual presentation of herpes simplex virus encephalitis: bilateral thalamic involvement and normal imaging of early stage of the disease. Am J Emerg Med. 2007;25:87–9.

    Article  PubMed  Google Scholar 

  98. Sener RN. Diffusion MRI in Rasmussen’s encephalitis, herpes simplex encephalitis, and bacterial meningoencephalitis. Comput Med Imaging Graph. 2002;26:327–32.

    Article  CAS  PubMed  Google Scholar 

  99. Sener RN. Herpes simplex encephalitis: diffusion MR imaging findings. Comput Med Imaging Graph. 2001;25:391–7.

    Article  CAS  PubMed  Google Scholar 

  100. Tsuchiya K, Katase S, Yoshino A, et al. Diffusion-weighted MR imaging of encephalitis. Am J Roentgenol. 1999;173:1097–9.

    Article  CAS  Google Scholar 

  101. Zimmerman RD, Russell EJ, Leeds NE, et al. CT in the early diagnosis of herpes simplex encephalitis. Am J Roentgenol. 1980;134:61–6.

    Article  CAS  Google Scholar 

  102. Kalita J, Misra UK. Comparison of CT scan and MRI findings in the diagnosis of Japanese encephalitis. J Neurol Sci. 2000;174:3–8.

    Article  CAS  PubMed  Google Scholar 

  103. Handique SK, Das RR, Barman K, et al. Temporal lobe involvement in Japanese encephalitis: problems in differential diagnosis. Am J Neuroradiol. 2006;27:1027–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Prakash M, Kumar S, Gupta RK. Diffusion-weighted MR imaging in Japanese encephalitis. J Comput Assist Tomogr. 2004;28:756–61.

    Article  PubMed  Google Scholar 

  105. Ali M, Safriel Y, Sohi J, et al. West Nile virus infection: MR imaging findings in the nervous system. Am J Neuroradiol. 2005;26:289–97.

    PubMed  PubMed Central  Google Scholar 

  106. Shen WC, Chiu HH, Chow KC, et al. MR imaging findings of enteroviral encephaloymelitis: an outbreak in Taiwan. AJNR Am J Neuroradiol. 1999;20:1889–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dale RC, De Sousa C, Wk C, et al. Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain. 2000;123:2407–22.

    Article  PubMed  Google Scholar 

  108. Campi A, Filippi M, Comi G, et al. Acute transverse myelopathy: spinal and cranial MR study with clinical follow-up. Am J Neuroradiol. 1995;16:115–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Balasubramanya KS, Kovoor JM, Jayakumar PN, et al. Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis. Neuroradiology. 2007;49:177–83.

    Article  CAS  PubMed  Google Scholar 

  110. Zuccoli G, Gallucci M, Capellades J, et al. Wernicke encephalopathy: MR findings at clinical presentation in twenty-six alcoholic and nonalcoholic patients. Am J Neuroradiol. 2007;28:1328–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gallucci M, Bozzao A, Splendiani A, et al. Wernicke encephalopathy: MR findings in five patients. Am J Neuroradiol. 1990;11:887–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zuccoli G, Pipitone N. Neuroimaging findings in acute Wernicke’s encephalopathy: review of the literature. Am J Roentgenol. 2009;192:501–8.

    Article  Google Scholar 

  113. Bae SJ, Lee HK, Lee JH, et al. Wernicke’s encephalopathy: a typical manifestation at MR imaging. AJNR Am J Neuroradiol. 2001;22:1480–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Antunez E, Estruch R, Cardenal C, et al. Usefulness of CT and MR imaging in the diagnosis of acute Wernicke's encephalopathy. Am J Roentgenol. 1998;171:1131–7.

    Article  CAS  Google Scholar 

  115. Bartynski WS, Boardman JF. Catheter angiography, MR angiography, and MR perfusion in posterior reversible encephalopathy syndrome. Am J Neuroradiol. 2008;29:447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bartynski WS, Boardman JF, Zeigler ZR, et al. Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. Am J Neuroradiol. 2006;27:2179–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schwartz RB, Bravo SM, Klufas RA, et al. Cyclosporine neurotoxicity and its relationship to hypertensive encephalopathy: CT and MR findings in 16 cases. Am J Roentgenol. 1995;165:627–31.

    Article  CAS  Google Scholar 

  118. Poon WL, Mok CC. Reversible posterior leucoencephalopathy in scleroderma. Ann Rheum Dis. 2005;64:1803–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kur JK, Esdaile JM. Posterior reversible encephalopathy syndrome—an underrecognized manifestation of systemic lupus erythematosus. J Rheumatol. 2006;33:2178–83.

    PubMed  Google Scholar 

  120. Bartynski WS, Zeigler ZR, Shadduck RK, et al. Pretransplantation conditioning influence on the occurrence of cyclosporine or FK-506 neurotoxicity in allogeneic bone marrow transplantation. Am J Neuroradiol. 2004;25:261–9.

    PubMed  PubMed Central  Google Scholar 

  121. Hefzy HM, Bartynski WS, Boardman JF, et al. Hemorrhage in posterior reversible encephalopathy syndrome: imaging and clinical features. Am J Neuroradiol. 2009;30:1371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pujol A, Pujol J, Graus F, et al. Hyperintense globus pallidus on T1-weighted MRI in cirrhotic patients is associated with severity of liver failure. Neurology. 1993;43:65–9.

    Article  CAS  PubMed  Google Scholar 

  123. Morgan MY. Noninvasive neuroinvestigation in liver disease. Semin Liver Dis. 1996;16:293–314.

    Article  CAS  PubMed  Google Scholar 

  124. Fujioka M, Okuchi K, Hiramatsu KI, et al. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28:584–7.

    Article  CAS  PubMed  Google Scholar 

  125. Lo L, Tan AC, Umapathi T, et al. Diffusion-weighted MR imaging in early diagnosis and prognosis of hypoglycemia. Am J Neuroradiol. 2006;27:1222–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yuh WT, Simonson TM, D’alessandro MP, et al. Temporal changes of MR findings in central pontinemyelinolysis. Am J Neuroradiol. 1995;16(4 Suppl):975–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Miller GM, Baker HL Jr, Okazaki H, et al. Central pontine myelinolysis and its imitators: MR findings. Radiology. 1988;168:795–802.

    Article  CAS  PubMed  Google Scholar 

  128. Lampl C, Yazdi K. Central pontine myelinolysis. Eur Neurol. 2002;47:3–10.

    Article  CAS  PubMed  Google Scholar 

  129. Ruzek KA, Campeau NG, Gm M. Early diagnosis of central pontine myelinolysis with diffusion-weighted imaging. Am J Neuroradiol. 2004;25:210–3.

    PubMed  PubMed Central  Google Scholar 

  130. Kinoshita T, Sugihara S, Matsusue E, et al. Pallidoreticular damage in acute carbon monoxide poisoning: diffusion-weighted MR imaging findings. Am J Neuroradiol. 2005;26:1845–8.

    PubMed  PubMed Central  Google Scholar 

  131. O'donnell P, Buxton PJ, Pitkin A, et al. The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol. 2000;55:273–80.

    Article  CAS  PubMed  Google Scholar 

  132. Rubinstein D, Escott E, Kelly JP. Methanol intoxication with putaminal and white matter necrosis: MR and CT findings. Am J Neuroradiol. 1995;16:1492–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Blanco M, Casado R, Vazquez F, et al. CT and MR imaging findings in methanol intoxication. Am J Neuroradiol. 2006;27:452–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sefidbakht S, Rasekhi AR, Kamali K, et al. Methanol poisoning: acute MR and CT findings in nine patients. Neuroradiology. 2007;49:427–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garg, A., Joseph, L. (2019). Neuroimaging in Neurological Emergencies. In: Singh, M., Bhatia, R. (eds) Emergencies in Neurology . Springer, Singapore. https://doi.org/10.1007/978-981-13-5866-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5866-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5864-7

  • Online ISBN: 978-981-13-5866-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics