Skip to main content

Secondary Metabolites of the Plant Growth Promoting Model Rhizobacterium Bacillus velezensis FZB42 Are Involved in Direct Suppression of Plant Pathogens and in Stimulation of Plant-Induced Systemic Resistance

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

Thirteen gene clusters involved in non-ribosomal and ribosomal synthesis of secondary metabolites with putative antimicrobial action have been identified within the genome of FZB42, the model for Gram-positive biocontrol strains. These gene clusters cover around ten percentage of the whole genome. Antimicrobial compounds not only suppress growth of plant pathogenic bacteria and fungi but could also stimulate induced systemic response (ISR) in plants. Recently, it has been found that besides secondary metabolites also a blend of volatile organic compounds (VOCs) is involved in the biocontrol effect exerted by FZB42 against plant pathogens suggesting complexity of biocontrol function. Cyclic lipopeptides and volatiles produced by plant-associated bacilli trigger pathways of induced systemic resistance (ISR), which protect plants against attacks of pathogenic microbes, viruses, and nematodes. Stimulation of ISR by bacterial metabolites is likely the main mechanism responsible for biocontrol action of FZB42.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard-Massicotte R, Tessier L, Lecuyer F, Lakshmanan V, Lucier JF, Garneau D et al (2017) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7:e01664–e01616

    Google Scholar 

  • Arguelles Arias A, Ongena M, Devreese B, Terrak M, Joris B, Fickers P (2013) Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS One 8(12):e83037. https://doi.org/10.1371/journal.pone.0083037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. https://doi.org/10.1039/c2np20085f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Belitsky B, Sonenshein A (2013) Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution. Proc Natl Acad Sci U S A 110:7026–7031. https://doi.org/10.1073/pnas.1300428110

    Article  PubMed  PubMed Central  Google Scholar 

  • Blom J, Rueckert C, Niu B, Wang Q, Borriss R (2012) The complete genome of Bacillus amyloliquefaciens subsp. plantarum CAU B946 contains a gene cluster for nonribosomal synthesis of iturin a. J Bacteriol 194:1845–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock H (1552) De stirpium, earum, quae in Germania nostra nascuntur commentariorum libri tres. Wendelin Rihel, Strassburg (First Latin edition)

    Google Scholar 

  • Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg/Dordrecht/London/New York, pp 41–76

    Chapter  Google Scholar 

  • Borriss R (2015) Towards a new generation of commercial microbial disease control and plant growth promotion products. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Microbes for sustainable agriculture. Springer, Germany, pp 329–337. https://doi.org/10.1007/978-3-319-08575-3

    Chapter  Google Scholar 

  • Borriss R (2016) Phytostimulation and biocontrol by the plant-associated Bacillus amyloliquefaciens FZB42: an update. In: Islam MT et al (eds) Bacilli and agrobiotechnology. Springer International Publishing AG, Berlin, pp 163–184

    Chapter  Google Scholar 

  • Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, Fan B, Pukall R, Schumann P, Sproer C, Junge H, Vater J, Pühler A, Klenk HP (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on their discriminating complete genome sequences. Int J Syst Evol Microbiol 61:1786–1801

    Article  CAS  PubMed  Google Scholar 

  • Borriss R, Danchin A, Harwood CR, Médigue C, Rocha EPC, Sekowska A, Vallenet D (2018) Bacillus subtilis, the model gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 11(1):3–17. https://doi.org/10.1111/1751-7915.13043

    Article  PubMed  Google Scholar 

  • Burkhart BJ, Hudson GA, Dunbar KL, Mitchell DA (2015) A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat Chem Biol 11(8):564–570. https://doi.org/10.1038/nchembio.1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher BG, Helmann JD (2006) Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol Microbiol 60:765–782

    Article  CAS  PubMed  Google Scholar 

  • Butcher RA, Schroeder FC, Fischbach MA, Straight PD, Kolter R, Walsh CT, Clardy J (2007) The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc Natl Acad Sci U S A 104(5):1506–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Chatterjee DK, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from Bacillus: fermentation, isolation, purification and chemical characterization. J Antibiot 45:832–838

    Article  CAS  Google Scholar 

  • Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Süssmuth R, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188:4024–4036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R (2009a) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140:38–44

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Borriss R (2009b) More than anticipated – production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Dietel K, Rändler M, Schmid M, Junge H, Borriss R et al (2013) Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One 8(7):e68818. https://doi.org/10.1371/journal.pone.0068818

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K et al (2015a) Cyclic lipopeptides of Bacillus amyloliquefaciens FZB42 subsp. plantarum colonizing the lettuce rhizosphere enhance plant defence responses towards the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact (9):984–995. https://doi.org/10.1094/MPMI-03-15-0066-R

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015b) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front Microbiol 6:780. https://doi.org/10.3389/fmicb.2015.00780

    Article  PubMed  PubMed Central  Google Scholar 

  • Debois D, Jourdan E, Smargiasso N, Thonart P, de Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86:4431–4438. https://doi.org/10.1021/ac500290s

    Article  CAS  PubMed  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96(23):13294–13299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap C, Kim SJ, Kwon SW, Rooney A (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens, Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 66:1212–1217. https://doi.org/10.1099/ijsem.0.000858

    Article  CAS  PubMed  Google Scholar 

  • Ebel J, Scheel D (1997) Signals in host–parasite interactions. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Erlacher A, Cardinale M, Grosch R, Grube M, Berg G (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5:175. https://doi.org/10.3389/fmicb.2014.00175

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan B, Blom J, Klenk HP, Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol 8:22. https://doi.org/10.3389/fmicb.2017.00022

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong W, Wang J, Chen Z, Xia B, Lu G (2011) Solution structure of LCI, a novel antimicrobial peptide from Bacillus subtilis. Biochemistry 50(18):3621–3627. https://doi.org/10.1021/bi200123w

    Article  CAS  PubMed  Google Scholar 

  • Gustafson K, Roman M, Fenical W (1989) The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Soc 111:7519–7524

    Article  CAS  Google Scholar 

  • Hao HT, Zhao X, Shang QH, Wang Y, Guo ZH, Zhang YB et al (2016) Comparative digital gene expression analysis of the Arabidopsis response to volatiles emitted by Bacillus amyloliquefaciens. PLoS One 11(8):0158621. https://doi.org/10.1371/journal.pone.0158621

    Article  CAS  Google Scholar 

  • He P, Hao K, Blom J, Rückert C, Vater J, Mao Z, Wu Y, Hou M, He P, He Y, Borriss R (2012) Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J Biotechnol 164(2):281–291. https://doi.org/10.1016/j.jbiotec.2012.12.014

    Article  CAS  PubMed  Google Scholar 

  • Herzner AM, Dischinger J, Szekat C, Josten M, Schmitz S, Yakéléba A et al (2011) Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS One 6(7):e22389. https://doi.org/10.1371/journal.pone.0022389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626. https://doi.org/10.1094/MPMI-20-6-0619

    Article  CAS  PubMed  Google Scholar 

  • Jacques P (2011) Surfactin and other Lipopeptides from Bacillus spp. In: Soberón-Chávez G (ed) Biosurfactants. Microbiology monographs, vol 20. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kalyon B, Helaly SE, Scholz R, Nachtigall J, Vater J, Borriss R, Süssmuth RD (2011) Plantazolicin a and B: structure of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org Lett 13:2996–2999. https://doi.org/10.1021/ol200809m

    Article  CAS  PubMed  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P et al (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koumoutsi A, Chen XH, Vater J, Borriss R, Deg U, Ycz E (2007) Positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl Environ Microbiol 73:6953–6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs AT, Grau R, Pollitt EJG (2017) Surfing of bacterial droplets: Bacillus subtilis sliding revisited. Proc Natl Acad Sci U S A 114:E8802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs B, Höding B, Kübart S, Workie MA, Junge H, Schmiedeknecht G, Bochow H, Hevesi M (1998) Use of Bacillus subtilis as biocontrol agent. I. Activities and characterization of Bacillus subtilis strains. J Plant Dis Prot 105:181–197. (in German)

    Google Scholar 

  • Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D, Wohlrab A, Dorrestein PC, Nizet V, Dixon JE (2008) Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad Sci U S A 105(15):5879–5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhou T, He D, Li XZ, Wu H, Liu W, Gao X (2011) Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J Mol Microbiol Biotechnol 20:43–52

    Article  PubMed  Google Scholar 

  • Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R et al (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081–10090. https://doi.org/10.1007/s00253-013-5247-5

    Article  CAS  PubMed  Google Scholar 

  • Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB et al (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11(9):625–631. https://doi.org/10.1038/nchembio.1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molohon KJ, Melby JO, Lee J, Evans BS, Dunbar KL, Bumpus SB et al (2011) Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem Biol 6:1307–1313. https://doi.org/10.1021/cb200339d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molohon KJ, Blair PM, Park S, Doroghazi JR, Maxson T, Hershfield JR et al (2016) Plantazolicin is an ultra-narrow spectrum antibiotic that targets the Bacillus anthracis membrane. ACS Infect Dis 2(3):207–220

    Article  CAS  PubMed  Google Scholar 

  • Müller S, Strack SN, Hoefer BC, Straight PD, Kearns DB, Kirby JR (2014) Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microbiol 80:5603–5610. https://doi.org/10.1128/AEM.01621-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldenhauer J, Chen XH, Borriss R, Piel J (2007) Biosynthesis of the antibiotic bacillaene, the product of the giant polyketide SynthaseVomplex of the trans-AT family. Angew Chem Int Ed Engl 46(43):8195–7

    Article  CAS  PubMed  Google Scholar 

  • Moldenhauer J, Götz DCG, Albert CR, Bischof SK, Schneider K, Süssmuth RD, Engeser M, Gross H, Bringmann G, Piel J (2010) The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: direct evidence for beta gamma dehydration by a trans-acyltransferase polyketide synthase. Angew Chem Int Ed Engl 49(8):1465–7

    Article  CAS  PubMed  Google Scholar 

  • Nakano C, Ozawa H, Akanuma G, Funa N, Horinouchi S (2009) Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis. J Bacteriol 191(15):4916–4923. https://doi.org/10.1128/JB.00407-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2, 3-butandiol dehydrogenase. Appl Environ Microbiol 74:6832–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191. https://doi.org/10.1111/j.1574-6941.2011.01208.x

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B et al (2007) Surfactin fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Patel PS, Huang S, Fisher S, Pirnik D, Aklonis C, Dean L et al (1995) Bacillaene, a novel inhibitor of prokaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy isolation, physico-chemical characterization and biological activity. J Antibiot (Tokyo) 48:997–1003

    Article  CAS  Google Scholar 

  • Peipoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  Google Scholar 

  • Portalier R, Robert-Baudouy J, Stoeber F (1980) Regulation of Escherichia coli K-12 hexauronate system genes: exu regulon. J Bacteriol 143:1095–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Uddin W, Wenner NG (2015) Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol Plant Pathol 16(6):546–558. https://doi.org/10.1111/mpp.12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Tabarez M, Jansen B, Sylla M, Luensdorf H, Häussler S, Santosa DA et al (2006) 7-O-Malonyl macrolactin a, a new macrolactin antibiotic from Bacillus subtilis – active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and a small-colony variant of Burkholderia cepacia. Antimicrob Agents Chemother 50:1701–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rueckert C, Blom J, Chen XH, Reva O, Borriss R (2011) Genome sequence of Bacillus amyloliquefaciens type strain DSM7T reveals differences to plant-associated Bacillus amyloliquefaciens FZB42. J Biotechnol 155:78–85

    Article  CAS  Google Scholar 

  • Ryu C, Farag MA, Hu C, Reddy MS, Wei H, Pare PW et al (2003) Bacterial volatiles promote growth in Arabidopsis. PNAS 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, Süssmuth RD (2007) Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod 70:1417–1423

    Article  CAS  PubMed  Google Scholar 

  • Schnell N, Entian KD, Schneider U, Götz F, Zähner H, Kellner R, Jung G (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333:276–278. https://doi.org/10.1038/333276a0

    Article  CAS  PubMed  Google Scholar 

  • Scholz R, Molohon KJ, Nachtigall J, Vater J, Markley AL, Süssmuth RD et al (2011) Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol 193:215–224. https://doi.org/10.1128/JB.00784-10

    Article  CAS  PubMed  Google Scholar 

  • Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, Schwecke T, Herfort S, Lasch P, Borriss R (2014) Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol 196:1842–1852

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295

    Article  CAS  PubMed  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  PubMed  Google Scholar 

  • Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Entian KD (2002) Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis. J Bacteriol 184(6):1703–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straight PD, Fischbach MA, Walsh CT, Rudner DZ, Kolter R (2007) A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci U S A 104:305–310. https://doi.org/10.1073/pnas.0609073103

    Article  CAS  PubMed  Google Scholar 

  • Tahir HAS, Gu Q, Wu H, Niu Y, Huo R, Gao X (2017a) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep 7:40481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahir HAS, Gu Q, Wu H, Raza W, Safdar A, Huang Z, Rajer FU, Gao X (2017b) Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol 17(1):133. https://doi.org/10.1186/s12870-017-1083-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Belkum MJ, Martin-Visscher LA, Vederas JC (2011) Structure and genetics of circular bacteriocins. Trends Microbiol 19:411–418. https://doi.org/10.1016/j.tim.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Bautista C, Rahlwes K, Straight P (2014) Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis. J Bacteriol 196(4):717–728. https://doi.org/10.1128/JB.01022-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810

    Article  CAS  PubMed  Google Scholar 

  • Wilson KE, Flor JE, Schwartz RE, Joshua H, Smith JL, Pelak BA et al (1987) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis: II. Isolation and physico-chemical characterization. J Antibiot (Tokyo) 40:1682–1691

    Article  CAS  Google Scholar 

  • Wipat A, Harwood CR (1999) The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol Ecol 28:1–9

    Article  CAS  Google Scholar 

  • Wu L, Wu H, Chen L, Xie S, Zang H, Borriss R, Gao XW (2014a) Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Appl Environ Microbiol 80:7512–7520. https://doi.org/10.1128/AEM.02605-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Wu H, Chen L, Lin L, Borriss R, Gao X (2014b) Bacilysin overproduction in Bacillus amyloliquefaciens FZB42 markerless derivative strains FZBREP and FZBSPA enhances antibacterial activity. Appl Microbiol Biotechnol 99(10):4255–4263. https://doi.org/10.1007/s00253-014-6251-0

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wu HJ, Chen L, Yu XF, Borriss R, Gao XW (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:12975. https://doi.org/10.1038/srep12975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Liu Y, Xu Y, Zhang G, Shen Q, Zhang R (2018) Exploring elicitors of the beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol Plant Microbe Interact. https://doi.org/10.1094/MPMI-11-17-0273-R

    Article  CAS  PubMed  Google Scholar 

  • Yokota K, Hayakawa H (2015) Impact of antimicrobial lipopeptides from Bacillus sp. on suppression of Fusarium yellows of tatsoi. Microbes Environ 30:281–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo JS, Zheng CJ, Lee S, Kwak JH, Kim WG (2006) Macrolactin N, a new peptide deformylase inhibitor produced by Bacillus subtilis. Bioorg Med Chem Lett 16:4889–4489

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Xu F, Zeng J, Zhan J (2012) Type III polyketide synthases in natural product biosynthesis. UBMB Life 64(4):285–229

    Article  CAS  Google Scholar 

  • Zhang N, Yang D, Kendall JRA, Borriss R, Druzhinina IS, Kubicek CP, Shen Q, Zhang R (2016) Comparative genomic analysis of Bacillus amyloliquefaciens and Bacillus subtilis reveals evolutional traits for adaptation to plant-associated habitats. Front Microbiol 7:2039. https://doi.org/10.3389/fmicb.2017.00022

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, Rajoka MSR, Yang H, Jin M (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101(15):5951–5960. https://doi.org/10.1007/s00253-017-8396-0

    Article  CAS  PubMed  Google Scholar 

  • Zweerink MM, Edison A (1987) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. III. Mode of action of difficidin. J Antibiot (Tokyo) 40:1691–1692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Borriss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borriss, R., Wu, H., Gao, X. (2019). Secondary Metabolites of the Plant Growth Promoting Model Rhizobacterium Bacillus velezensis FZB42 Are Involved in Direct Suppression of Plant Pathogens and in Stimulation of Plant-Induced Systemic Resistance. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_8

Download citation

Publish with us

Policies and ethics