Skip to main content

Non-mycorrhizal Fungal Spectrum of Root Communities

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

The root-soil interface known as rhizosphere is a dynamic environment which is physically, chemically and biologically different from the bulk of soil populations, a microcosm where microorganisms, plant roots and soil constituents interact and develop. The rhizosphere therefore is the zone of influence of plant roots on the associated microbiota and soil components characterized by an altered microbial diversity with increased activity and number of microorganisms. Over 90% of plant species/roots are colonized by mycorrhizal fungi but also by various clades of endophytic fungi. Although many of these fungi are regarded as commensalistic symbionts and the function of the root-associated fungi is not exactly known, recent studies have shown that they can benefit their hosts by mineralizing soil nutrients in the rhizosphere or protecting hosts from soil pathogens. Besides the sharing root with associated fungi could facilitate the coexistence of plant species, studies clarify how diverse clades of root-associated fungi shared within a plant community are essential to plant community dynamics and stability. Although arbuscular mycorrhizal fungi are one of the most important components of the soil ecosystem, the roots are also colonized by diverse non-mycorrhizal fungal species which are represented in much greater numbers than mycorrhizal fungi. They are mostly found without causing any symptoms of disease. They may promote the growth of plants such as orchids by mobilizing soil nutrients in the rhizosphere. Influence on amounts or changes of secondary metabolites was also indicated. In general they are thought to be a resource for bioactive compounds that protect the host from soil pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Trigueros CA, Rillig MC (2016) Effect of different root endophytic fungi on plant community structure in experimental microcosms. Ecol Evol 6:8149–8158

    Article  Google Scholar 

  • Aguilar-Trigueros CA, Powell JR, Anderson IC, Antonovics J, Rillg MC (2014) Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci 19:432–438

    Article  CAS  Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341

    Article  Google Scholar 

  • Almario J, Jeena G, Wunder J et al (2017) Root associated fungal microbiota of non mycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. PNAS 114(44):9403–9412

    Article  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D et al (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20(6):642–650

    Article  CAS  Google Scholar 

  • Bardgett RD, Mommer L, de Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29(12):692–699

    Article  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206

    Chapter  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:896

    Article  CAS  Google Scholar 

  • Elad Y, Barak R, Chet I, Henis Y (2008) Ultrastructural studies of the interaction between Trichoderma spp. and plant pathogenic fungi. J Phytopathol 107:168–175

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  Google Scholar 

  • Herrera P, Suarez JP, Kottke I (2010) Orchids keep the ascomycetes out side: a highly diverse group of ascomycetes colonizing the velamen of epiphytic orchids from a tropical mountain rainforest in Southern Ecuador. Mycology 1(4):262–268

    Article  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes- are they mycorrhizal? Mycorrhiza 11: 207–211

    Article  Google Scholar 

  • Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52

    Google Scholar 

  • Lemanceau P, Bakker PAHM, de Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnation by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58:2978–2982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Ma X, Kang J, Nontachaiyapoom S et al (2015) Non-mycorrhizal endophytic fungi from orchids. Curr Sci 109:1081–1016

    Google Scholar 

  • Malcolm GM, Kuldau GA, Gugino BK, Jimenez- Gasco Mdel M (2013) Hidden host plant associations of soilborne fungal pathogens: an ecological perspective. Phytopathology 103:538–544

    Article  CAS  Google Scholar 

  • Mandyam K, Loughin T, Jumpponen A (2010) Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia 102:813–821

    Article  Google Scholar 

  • Mayerhofer M, Kernaghan G, Harpr K (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128

    Article  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  Google Scholar 

  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81

    Article  CAS  Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe symbiosis – applied facets. Springer, New Delhi, pp 111–125

    Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol 14:434–447

    Article  CAS  Google Scholar 

  • Raajimakers JM, Paulitz TC, Steinberg C et al (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12(8):386–393

    Article  CAS  Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore

    Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, Wallington

    Google Scholar 

  • Stergipoulos I, Gordon TR (2014) Cryptic fungal infections: the hidden agenda of plant pathogens. Front Plant Sci 5:1–4

    Google Scholar 

  • Sudheep NM, Sridhar KR (2012) Non-mycorrhizal fungal endophytes in two orchids of Kaiga forest (Western Ghats), India. J For Res 23(3):453–460

    Article  CAS  Google Scholar 

  • Talbot JM, Bruns TD, Taylor JW et al (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci U S A 111:6341–6346

    Article  CAS  Google Scholar 

  • Tedersoo L, Pärtel K, Jairus T, Gates G et al (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Pölme S et al (2014) Fungal biogeography. Global diversity and geography of soil fungi. Science 346:12356688

    Article  Google Scholar 

  • Toju H, Yamamoto S, Sato H et al (2013) Sharing of diverse mycorrhizal and root-endophytic fungi among plant species in an oak-dominated cool-temperate forests. PLoS One 8(10):e78248

    Article  CAS  Google Scholar 

  • Vyas RK, Mathus K (2002) Trichoderma spp. in cumin rhizosphere and their potential in suppression of wilt. Indian Phytopathol 55:455–457

    Google Scholar 

  • Wagg C, Jansa J, Schimd B, van der Heijden MG (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009

    Article  Google Scholar 

  • Wehner J, Powell JR, Muller LAH et al (2014) Determinants of root-associated fungal communities within Asteraceae in a semi-arid grassland. J Ecol 102:425–436

    Article  Google Scholar 

  • Xu J, Yang X, Lin Q (2014) Chemistry and biology of Pestalotiopsis-derived natural products. Fungal Divers 66:37–68

    Article  Google Scholar 

  • Yuan Z, Chen Y, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25:295. https://doi.org/10.1007/s11274-008-9893-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ă–zkale, E. (2019). Non-mycorrhizal Fungal Spectrum of Root Communities. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., GarcĂ­a-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_4

Download citation

Publish with us

Policies and ethics