Skip to main content

Secondary Metabolites of Non-pathogenic Fusarium: Scope in Agriculture

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

Non-pathogenic Fusarium are spread in different environments such as in soil, in rhizosphere and in planta. Non-pathogenic Fusarium secret many chemically diverse secondary metabolites for competing with other soil microorganisms. The role of secondary metabolites is working together with other modes of action. These mechanisms were comprised of mycoparasitism, antibiotic, competition, induce the resistance and defences plant, and change in plant chemistry, biofertilizer, and production the beneficial enzymes. These features are very helpful in the scope of agriculture. These can be effectively utilized as an eco-friendly alternative to chemical pesticides for the management of phytopathogens. Interestingly, non-pathogenic Fusarium also behaves like an endophyte, entering the host system and inducing the defence response. Finally, the importance of application of non-pathogenic Fusarium (or its secondary metabolites) over chemical pesticides is far outreaching and comparatively more beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabouvette C (1990) Biological control of Fusarium wilt pathogens in suppressive soils. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, UK, pp 27–43

    Google Scholar 

  • Al-Ani LKT (2006) Induce resistance against cucumber mosaic virus by pseudomonas fluorescens migula. MSc Department of Plant Protection, College of Agriculture, University of Baghdad, Baghdad, Iraq, pp 90

    Google Scholar 

  • Al-Ani LKT (2010) Biological control of Fusarium wilt of banana by non pathogenic Fusarium oxysporum. PPSKH colloquium, Pust Pengajian Sains Kajihayat/School of Biological Sciences, USM, June, p 10

    Google Scholar 

  • Al-Ani LKT (2017a) PGPR: A good step to control several of plant pathogens. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR Research. CABI, UK, pp 398–410

    Google Scholar 

  • Al-Ani LKT (2017b) Potential of utilizing biological and chemical agents in the control of Fusarium wilt of banana. PhD, School of Biology Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia, p 259

    Google Scholar 

  • AL-Ani LKT (2018a) Trichoderma: beneficial role in sustainable agriculture by plant disease management. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response, Microorganisms for sustainability, vol 5. Springer, Singapore, pp 105–126

    Google Scholar 

  • AL-Ani LKT (2018b) Trichoderma from extreme environments: physiology, diversity, and antagonistic activity. In: Egamberdieva D, Birkeland N-K, Panosyan H, Li W-J (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability. Springer, Singapore, pp 388–403

    Google Scholar 

  • AL-Ani LKT (2019a) The importance of endophytic fungi from the medicinal plant: Diversity, natural bioactive compounds, and control of plant pathogens. In: Egamberdieva D et al (eds) Medically important plant biomes source of secondary metabolites. Springer, Singapore, (In Press)

    Google Scholar 

  • AL-Ani LKT (2019b) A patent survey on Trichoderma spp. (from 2007-2017). In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)

    Google Scholar 

  • AL-Ani LKT (2019c) Entomopathogenic fungi in intellectual property and using in biotechnology. In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)

    Google Scholar 

  • AL-Ani LKT (2019d) Recent Patents on Endophytic Fungi and their International Market. In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)

    Google Scholar 

  • AL-Ani LKT (2019e) Bioactive secondary metabolites of trichoderma spp. for efficient management of phytopathogens. In: Singh HB, Keswani C, Reddy MS, Royano ES, García-Estrada C (eds) Secondary metabolites of plant growth promoting rhizomicroorganisms - discovery and applications. Springer, Singapore (In Press)

    Google Scholar 

  • Al-Ani RA, Al-Ani LKT (2011) Induced of systemic resistance in cucumber plants against Cucumber mosaic virus (CMV) by Pseudomonas fluorescens Migula. Arab Journal of Plant Protection 29:36–42

    Google Scholar 

  • Al-Ani LKT, Albaayit SFA (2018a) Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). International conference on Research in Education & Science, ICRES April 28 – May 1, Marmaris, Turkey, pp 271 (Abstract)

    Google Scholar 

  • Al-Ani LKT, Albaayit SFA (2018b) Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). The Eurasia Proceedings of Science. Technology, Engineering & Mathematics (EPSTEM) 2:35–38

    Google Scholar 

  • Al-Ani LKT, Negim E-S, Mohammed AM, Salleh B, Saleh MI (2012) Antifungal activity of novel Binary grafting polymers. 1st USM – KAZNU International Conference on: Challenges of Teaching and Chemistry Research in Institutions of Higher Learning, 11-13 July, p 44.

    Google Scholar 

  • Al-Ani LKT, Salleh B, Mohammed AM, Ghazali AHA, Al-Shahwany AW, Azuddin NF (2013a) Biocontrol of Fusarium wilt of Banana by Non-pathogenic Fusarium spp. International symposium on tropical fungi, ISTF, IPB International Convention Center, Bogor, Indonesia; 09/2013, pp 50–51

    Google Scholar 

  • Al-Ani LKT, Salleh B, Ghazali AHA (2013b) Biocontrol of fusarium wilt of banana by Trichoderma spp. 8th PPSKH colloquium, Pust Pengajian Sains Kajihayat/School of Biological Sciences, USM, 5–6 June.

    Google Scholar 

  • Al-Ani LKT, Yonus MI, Mahdii BA, Omer MA, Taher JK, Albaayit SFA, Al-Khoja SB (2018) First record of use Fusarium proliferatum fungi in direct treatment to control the adult of wheat flour Tribolium confusum, as well as, use the entomopathogenic fungi Beauveria bassiana. Ecology, Environment and Conservation 24(3):29–34

    Google Scholar 

  • Al-Ani LKT, Mohammed AM, Ibrahim NF, Azuddin NF, Aguilar-Marcelino L (2019) Biological control of Fusarium oxysporum f. sp. cubense tropical race 4 in vivo by using three species of Trichoderma. Arc Phytopathol Plant Protect (In press)

    Google Scholar 

  • Altomare C, Perrone G, Zonno MC, Evidente A, Pingue R, Fanti F, Polonelli L (2000) Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J Nat Prod 63:1131–1135

    CAS  PubMed  Google Scholar 

  • Attitalla IH, Mansour SE, Mohamed WS, Al-Ani LKT, Mohammed AM, Faturi MY, Balal IAA, El-Maraghy SSM (2010a) Influence of aspergillus flavus and aspergillus terreus on the protein value of the two varieties of peanut grains. International conference, International Mycotoxin Conference, MycoRed, Penang –Malaysia, 1-4 Dec (177)

    Google Scholar 

  • Attitalla IH, Laith KA, Nasib MA, Balal IAA, Zakaria M, El-Maraghy SSM, Karim SR (2010b). Screening of Fungi Associated With Commercial Grains and Animal Feeds in Al-Bayda Governorate, Libya. World Appl Sci J 9(7):746–756

    Google Scholar 

  • Bao JR, Lazarovits G (2002) Evaluation of three procedures for recovery of GUS enzyme and colony forming units of a nonpathogenic strain of Fusarium oxysporum 70T01, from inoculated tomato roots. Can J Plant Pathol 24:340–348

    CAS  Google Scholar 

  • Barik BP, Tayung K, Jagadev PN, Dutta SK (2010) Phylogenetic placement of an endophytic fungus Fusarium oxysporum isolated from Acorus calamus rhizomes with antimicrobial activity. Eur J Biol Sci 2:8–16

    Google Scholar 

  • Bartelt RJ, Wicklow DT (1999) Volatiles from Fusarium verticillioides (sacc.) Nirenb. And their attractiveness to nitidulid beetles. J Agric Food Chem 47:2447–2454

    CAS  PubMed  Google Scholar 

  • Belgrove A, Steinberg C, Viljoen A (2011) Evaluation of nonpathogenic Fusarium oxysporum and Pseudomonas fluorescens for Panama disease control. Plant Dis 95:951–959

    CAS  PubMed  Google Scholar 

  • Benhamou N, Garand C (2001) Cytological analysis of defence-related mechanisms induced in pea root tissue in response to colonization by non-pathogenic Fusarium oxysporum Fo47. Phytopathology 91:730–740

    CAS  PubMed  Google Scholar 

  • Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68(8):4044–4060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. International Microbiology 7:249–260

    PubMed  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206

    Google Scholar 

  • Bitas V, Kang S (2012) Fusarium oxysporum produces volatile organic compounds that affect the growth and disease defense of Arabidopsis thaliana. APS annual meeting August 4–8 Providence, USA, Poster Session: MPMI-Fungi, p 588

    Google Scholar 

  • Bitas V, McCartney N, Li N, Demers J, Kim JE, Kim HS, Brown KM, Kang S (2015) Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front Microbiol 6:1248. https://doi.org/10.3389/fmicb.2015.01248

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogner CW, Kamdem RST, Sichtermann G, Matthäus C, Hölscher D, Popp J, Proksch P, Grundler FMW, Schoutencorresponding A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol 10(1):175–188. https://doi.org/10.1111/1751-7915.12467

    Article  CAS  PubMed  Google Scholar 

  • Burgess LW (1981) General ecology of the Fusaria. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 225–235

    Google Scholar 

  • Campos FF, Johann S, Cota BB, Alves TMA, Rosa LH, Caligiorne RB, Cisalpino PS, Rosa CA, Zani CL (2011) Antifungal activity of trichothecenes from Fusarium sp. against clinical isolates of Paracoccidioides brasiliensis. Mycoses 54:122–129

    Google Scholar 

  • Campos FF, Sales Júnior PA, Romanha AJ, Araújo MSS, Siqueira EP, Resende JMR, Alves TMA, Martins-Filho AO, Santos VL, Rosa CA, Zani CL, Costa BB (2015) Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Mem Inst Oswaldo Cruz 110:65–74. https://doi.org/10.1590/0074-02760140243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao LX, Yon JL, Zhao SN (2002) Endophyte fungi from Musa acuminata leaves and roots in South China. World J Microbiol Biotechnol 18:169–171

    Google Scholar 

  • Chakravarthi BVSK, Das P, Surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33:259–267

    CAS  PubMed  Google Scholar 

  • Cohen BA, Amsellem Z, Lev-Yadun S, Gressel J (2002a) Infection of tubercles of the parasitic weed Orobanche aegyptiaca by mycoherbicidal Fusarium species. Ann Bot 90:567–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen BA, Amsellem Z, Maor R, Sharon A, Gressel J (2002b) Transgenically enhanced expression of indole-3-acetic acid confers hypervirulence to plant pathogens. Phytopathology 92:590–596

    CAS  PubMed  Google Scholar 

  • Costa LSAS (2014) Volatiles produced by microbiota from Meloidogyne exigua egg masses and plant volatile emission in response to single and dual infestations with spider mite and nematode. Tese (Doutorado em Agronomia/Fitopatologia) – Universidade Federal de Lavras, Lavras, p 94

    Google Scholar 

  • Couteaudier Y, Alabouvette C (1990) Quantitative comparison of Fusarium oxysporum competitiveness in relation with carbon utilization. FEMS Microbiology 74:261–268

    CAS  Google Scholar 

  • Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920

    CAS  PubMed  Google Scholar 

  • Dababat AEA, Sikora RA (2007) Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9(6):771–776

    Google Scholar 

  • Dai CC, Yu BY, Li X (2008) Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr J Biotechnol 7(19):3505–3510

    CAS  Google Scholar 

  • Demers JE, Gugino BK, Jiménez-Gasco MM (2015) Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl Environ Microbiol 81:81–90. https://doi.org/10.1128/AEM.02590-14

    Article  CAS  PubMed  Google Scholar 

  • Deng BV, Liu KH, Chen WQ, Ding XW, Xie XC (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biotechnol 25:139–143. https://doi.org/10.1007/s11274-008-987-2

    Article  CAS  Google Scholar 

  • Di X, Takken FL, Tintor N (2016) How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Front Plant Sci 7:170

    PubMed  PubMed Central  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by non-pathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Google Scholar 

  • Effendi H (2004) Isolation and structure elucidation of bioactive secondary metabolites of sponge-derived fungi collected from the Mediterranean Sea (Italy) and Bali Sea (Indonesia). Doctoral dissertation, Heinrich-Heine-Universität Düsseldorf, pp 106–127

    Google Scholar 

  • Elavarasi A, Gnanaprakash SR, Murugaiyan K (2012) Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asia Pac J Trop Biomed 2:1081–1085

    Google Scholar 

  • Evidente A, Amalfitano C, Pengue R, Altomare C (1999) High performance liquid chromatography for the analysis of Fusapyrone and Deoxyfusapyrone, two antifungal a-Pyrones from Fusarium semitectum. Nat Toxins 7:133–137

    CAS  PubMed  Google Scholar 

  • Fravel DR, Larkin RP (2002) Reduction of Fusarium wilt of hydroponically-grow basil by fusarium oxysporum strain CS-20. Crop Prot 21:539–543

    Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Google Scholar 

  • Freeman S, Zveibil A, Vintal H, Maymon M (2002) Isolation of nonpathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilt in Cucurbits. Phytopathology 92:164–168

    PubMed  Google Scholar 

  • Fuchs JG, Moënne-Loccoz Y, Défago G (1997) Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis 81:492–496

    PubMed  Google Scholar 

  • Garret MK, Robinson PM (1969) A stable inhibitor of spore germination produced by fungi. Arch Microbiol 67:370–377

    Google Scholar 

  • Garyali S, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23:1372–1380

    CAS  PubMed  Google Scholar 

  • Gizi D, Stringlis IA, Tjamos SE, Paplomatas EJ (2011) Seedling vaccination by stem injecting a conidial suspension of F2, a non-pathogenic Fusarium oxysporum strain, suppresses Verticillium wilt of eggplant. Biol Control 58:387–392. https://doi.org/10.1016/j.biocontrol.2011.06.009

    Article  Google Scholar 

  • Hervás A, Trapero-Casas JL, Jimenez-Diaz RM (1995) Induced resistance against Fusarium wilt of chickpea by nonpathogenic races of Fusarium oxysporum f. sp. ciceris and nonpathogenic isolates of F. oxysporum. Plant Dis 79:1110–1116

    Google Scholar 

  • Hidayat I, Radiastuti N, Rahayu G, Achmadi S, Okane I (2016) Three Quinine and Cinchonidine producing Fusarium species from Indonesia. Curr Res Environ Appl Mycol 6(1):20–34. https://doi.org/10.5943/cream/6/1/3

    Article  Google Scholar 

  • Himmelstein JC (2013) Mechanisms of disease suppression by a hairy vetch (Vicia villosa) cover crop on fusarium wilt of watermelon and the efficacy of the biocontrol actinovate. PhD thesis, University of Maryland, USA, p 158

    Google Scholar 

  • Honda N, Kawakubo Y (1998) Control of Fusarium basal rot of rakkyo by non pathogenic Fusarium moniliforme and Fusarium oxysporum. Soil Microorganisms 51:13–18

    Google Scholar 

  • Honda N, Kawakubo Y (1999) Isolation of nonpathogenic Fusarium fujikuroi and Fusarium oxysporum from rakkyo tissues and their colonization of rakkyo roots. Soil Microorganisms (Japan) 53:121–128

    Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Huang Z, Yang J, She Z, Lin Y (2012) A new isoflavone from the mangrove endophytic fungus Fusarium sp. (ZZF60). Nat Prod Res 26(1):11–15. https://doi.org/10.1080/14786419.2010.529444

    Article  CAS  PubMed  Google Scholar 

  • Ilic J, Cosic J, Vrandecic K, Dugalic K, Pranjic A, Martin J (2017) Influence of endophytic fungi isolated from symptomless weeds on cherry plants. Mycosphere 8(1):18–30. https://doi.org/10.5943/mycosphere/8/1/3

    Article  Google Scholar 

  • Imazaki I, Kadota I (2015) Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiol Ecol 91:fiv098. https://doi.org/10.1093/femsec/fiv098

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto H, Fukushi Y, Tahara S (2004) Nonpathogenic Fusarium strains protect the seedlings of Lepidium sativum from Pythium ultimum. Soil Biol Biochem 36:409–414

    CAS  Google Scholar 

  • Jayaprakashvel M, Mathivanan N (2011) Management of plant diseases by microbial metabolites. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 237–265

    Google Scholar 

  • Kaur R, Kaur J, Singh RS (2010) Nonpathogenic Fusarium as a biological control agent. Plant Pathol J 9(3):79–91

    CAS  Google Scholar 

  • Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52

    Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121. https://doi.org/10.1007/s11274-007-9582-5

    Article  CAS  Google Scholar 

  • Kuldau GA, Yates IE (2000) Evidence of Fusarium endophytes in cultivated and wild plants. In: Bacon CW, JJF W (eds) Microbial endophytes. Marcel Dekker Inc., New York, pp 85–117

    Google Scholar 

  • Kumar A, Ahmad A (2013) Biotransformation of vinblastine to vincristine by the endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Biocatal Biotransformation 31(2):89–93

    CAS  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805. https://doi.org/10.1371/journal.pone.0071805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz A (2010) Endophytic Fusarium oxysporum: Phylogeny and induced defense responses in banana plants against Radopholus similis. PhD dissertation, Rheinischen Friedrich-Wilhems-Universität, Saarbrücken, Deutschland, p 161

    Google Scholar 

  • Landa BB, Cachinero-Díaz JM, Lemanceau P, Jiménez-Díaz RM, Alabouvette C (2002) Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum. Can J Microbiol 48:971–985

    CAS  PubMed  Google Scholar 

  • Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis 82:1022–1028

    PubMed  Google Scholar 

  • Larkin RP, Fravel DR (1999) Mechanisms of action and dose response relationships governing biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 89:1152–1161

    CAS  PubMed  Google Scholar 

  • Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by non-pathogenic Fusarium oxysporum and other microorganisms recovered from disease-suppressive soil. Phytopathology 86:812–819

    Google Scholar 

  • LeBlanc NR (2015) In uence of plant diversity and perennial plant identity on Fusarium communities in soil. PhD thesis, University of Minnesota, MN, USA, p 108

    Google Scholar 

  • Lemanceau P, Alabouvette C (1991) Biological control of Fusarium diseases by fluorescent pseudomonas and nonpathogenic Fusarium. Crop Prot 10:279–286

    Google Scholar 

  • Leslie JF (1996) Genetic problems in some Fusarium species. Sydowia 48(1):32–43

    Google Scholar 

  • Leslie JF, Pearson CAS, Nelson PE, Toussoun TA (1990) Fusarium spp. from corn, sorghum and soybean fields in the Central and Eastern United States. Phytopathology 80:343–350

    Google Scholar 

  • Li N, Kang S (2018) Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants. Mycology. https://doi.org/10.1080/21501203.2018.1448009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li CT, Li Y, Wang QJ, Sung CK (2008) Taxol production by Fusarium arthrosporioides isolated from yew, Taxus cuspidata. J Med Biochem 27(4):454–458. https://doi.org/10.2478/v10011-008-0022-3

    Article  CAS  Google Scholar 

  • Li P, Mou Y, Shan T, Xu J, Li Y, Lu S, Zhou L (2011a) Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis. Molecules 16:9003–9016. https://doi.org/10.3390/molecules16119003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Mao Z, Lou J, Li Y, Mou SY, Lu S, Peng Y, Zhou L (2011b) Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum. Molecules 16:10631–10644. https://doi.org/10.3390/molecules161210631

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Lou J, Mou Y, Sun W, Shan T, Zhou L (2012) Effects of oligosaccharide elicitors from endophyitc Fusarium oxysporum Dzf17 on diosgenin accumulation in Dioscorea zingiberensis seedling cultures. J Med Plants Res 6:5128–5134. https://doi.org/10.5897/JMPR12.120

    Article  CAS  Google Scholar 

  • Li P, Haiyu L, Jiajia M, Weibo S, Xiaohan W, Shiqiong L, Youliang P, Ligang Z (2014) Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures. Electron J Biotechnol 17(4):156–161. https://doi.org/10.1016/j.ejbt.2014.04.012

    Article  CAS  Google Scholar 

  • Liu XL, Huang KH, Zhou JZ, Meng L, Wang Y, Zhang LX (2012) Identification and antibacterial characteristics of an endophytic fungus Fusarium oxysporum from Lilium lancifolium. Lett Appl Microbiol 55:399–406

    CAS  PubMed  Google Scholar 

  • Louter JH, Edgington LV (1990) Indications of cross-protection against fusarium crown and root rot of tomato. Can J Plant Pathol 12:283–288

    Google Scholar 

  • Mandeel Q, Baker R (1991) Mechanisms involved in biological control of cucumber with strains of non-pathogenic Fusarium oxysporum. Phytopathology 81:462–469

    Google Scholar 

  • Mathivanan N, Murugesan K (1998) Isolation and purification of an antifungal metabolite from Fusarium chlamydosporum, a mycoparasite to Puccinia arachidis, the rust pathogen of groundnut. Indian J Exp Biol 37:98–101

    Google Scholar 

  • Mathivanan N, Murugesan K (1999) Isolation and purification of an antifungal metabolite from Fusarium chlamydosporum, a mycoparasite to Puccinia arachidis, the rust pathogen of groundnut. Indian J Exp Biol 37:98–101

    CAS  Google Scholar 

  • Mennan S, Aksoy HM, Ecevit O (2005) Antagonistic effect of Fusarium oxysporum on Heterodera cruciferae. J Phytopathol 153(4):221–225. https://doi.org/10.1111/j.1439-0434.2005.00957.x

    Article  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11(4):844–854

    CAS  PubMed  Google Scholar 

  • Minuto A, Migheli Q, Garibaldi A (1995) Evaluation of antagonistic strains of Fusarium spp. in the biological and integrated control of Fusarium wilt of cyclamen. Crop Prot 14:221–226

    Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe symbiosis–applied facets. Springer, New Delhi, pp 111–125

    Google Scholar 

  • Mohammed AM, AL-Ani LKT, Bekbayeva L, Salleh B (2011) Biological control of Fusarium oxysporum f. sp. cubense by Pseudomonas fluorescens and BABA in vitro. World Appl Sci J 15(2):189–191

    CAS  Google Scholar 

  • Mohammed AM, Negim E-S, Al-Ani LKT, Salleh B, Saleh MI (2012) Utilization of amino-azines polymers as antifungal activity for banana. 1st USM – KAZNU International Conference on: Challenges of Teaching and Chemistry Research in Institutions of Higher Learning, 11-13 July, p 29

    Google Scholar 

  • Mohammed AM, Al-Ani LKT, Salleh B (2013) Potential management of Fusarium oxysporum f. sp. cubense, the banana wilt pathogen by using pseudomonas and beta-amino-butyric acid (BABA). International Symposium on Tropical Fungi, ISTF, IPB International Convention Center, Bogor. Indonesia 09(/2013):37

    Google Scholar 

  • Mohammed AM, Al-Ani LKT, Salleh B, Ghazali, AMA (2014) Determining plant growth promoting and biocontrol factor of bacterial culture media. The 3rd confernce on Pests management, Crop Protection Research Centre, Sudan, 3-4 February, p 103.

    Google Scholar 

  • Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Umashaanker R (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101(2):323–329. https://doi.org/10.1007/s10482-011-9638-2

    Article  CAS  PubMed  Google Scholar 

  • Musavi SF, Dhavale A, Balakrishnan RM (2015) Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep Biochem Biotechnol 45:158–172. https://doi.org/10.1080/10826068.2014.907177

    Article  CAS  PubMed  Google Scholar 

  • Nadeem M, Ram M, Alam P, Ahmad MM, Mohammad A, Al-Qurainy F, Khan S, Abdin Z (2012) Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res 6(10):2493–2499

    CAS  Google Scholar 

  • Nagao H, Coutaudier Y, Alabouvette C (1990) Colonization of sterilized soil and flax roots by strains of Fusarium oxysporum and Fusarium solani. Symbiosis, 9: 343–354

    Google Scholar 

  • Nawar LS (2016) Phytochemical and SDS-dissociated proteins of pathogenic and nonpathogenic Fusarium oxysporum isolates. Int J Chem Tech Res 9(6):165–172

    CAS  Google Scholar 

  • Nefzi A, Aydi Ben Abdallah R, Jabnoun-Khiareddine H, Ammar N, Somai L, Hamada W, Haouala R, Daami-Remadi M (2018) Investigation on biosuppression of Fusarium crown and root rot of tomato (Solanum lycopersicum L.) and growth promotion using fungi naturally associated to Solanum linnaeanum L. Af J Microbiol Res 12(7):152–170

    CAS  Google Scholar 

  • Nel B, Steinberg C, Labuschagne N, Viljoen A (2006a) The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathol 55(2):216–223

    Google Scholar 

  • Nel B, Steinberg C, Labuschagne N, Viljoen A (2006b) Isolation and characterization of nonpathogenic Fusarium oxysporum isolates from the rhizosphere of healthy banana plants. Plant Pathol 55(2):207–216

    CAS  Google Scholar 

  • Nitao JK, Meyer SLF, Schmidt WF, Fettinger JC, Chitwood DJ (2001) Nematode antagonistic trichothecenes from Fusarium equiseti. J Chem Ecol 27:859–869

    CAS  PubMed  Google Scholar 

  • Nor Azliza I, Hafizi R, Nurhazrati M, Salleh B (2014) Production of major mycotoxins by Fusarium Species isolated from Wild Grasses in Peninsular Malaysia. Sains Malaysiana 43(1):89–94

    Google Scholar 

  • Olivain C, Alabouvette C (1999) Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici discussed in comparison to a non-pathogenic strain. New Phytol 141:497–510

    Google Scholar 

  • Olivain C, Trouvelot S, Binet MN, Cordier C, Pugin A, Alabouvette C (2003) Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and non-pathogenic strains of Fusarium oxysporum. Appl Environ Microbiolol 69:5453–5462

    CAS  Google Scholar 

  • Olivain C, Humbert C, Nahalkova J, Fatehi J, Haridon FL, Alabouvette C (2006) Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol 72(2):1523–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan F, Hou K, Gao F, Hu B, Chen Q, Wu W (2014) Peimisine and peiminine production by endophytic fungus Fusarium sp. isolated from Fritillaria unibracteata var. wabensis. Phytomedicine 21:1104–1109. https://doi.org/10.1016/j.phymed.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  • Pan F, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-D-glucoside. Fitoterapia 103:213–221. https://doi.org/10.1016/j.fitote.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  • Panina Y, Fravel DR, Baker CJ, Shcherbakova LA (2007) Biocontrol and plant pathogenic Fusarium oxysporum-induced changes in phenolic compounds in tomato leaves and roots. J Phytopathol 155:475–481

    CAS  Google Scholar 

  • Paparu P, Dubois T, Coyne D, Viljoen A (2007) Defense-related gene expression in susceptible and tolerant bananas (Musa spp.) following inoculation with non-pathogenic Fusarium oxysporum endophytes and challenge with Radopholus similis. Physiol Mol Plant Pathol 71:149–157

    CAS  Google Scholar 

  • Pu X, Xie B, Li P, Mao Z, Ling J, Shen H, Zhang J, Huang N, Lin B (2014) Analysis of the defence-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20. FEMS Microbiol Lett 355(2):142–151. https://doi.org/10.1111/1574-6968.12461

    Article  CAS  PubMed  Google Scholar 

  • Qureshi SA, Ruqqia VS, Ara J, Ehteshamul-Haque S (2012) Nematicidal potential of culture filtrates of soil fungi associated with rhizosphere and rhizoplane of cultivated and wild plants. Pak J Bot 44(3):1041–1046

    Google Scholar 

  • Raghunandan BL (2013) Evaluation of non-pathogenic Fusarium spp. for their biological control efficacy against Fusarium wilt of watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai]. PhD thesis, University of Agricultural Sciences, Bengaluru, p 255

    Google Scholar 

  • Raviraja NS (2005) Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. J Basic Microbiol 45(3):230–235. https://doi.org/10.1002/jobm.200410514

    Article  CAS  PubMed  Google Scholar 

  • Rim SO, Lee JH, Choi WY, Hwang SK, Suh SJ, Lee IJ, Rhee IK, Kim JG (2005) Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J Microbiol Biotechnol 15:809–814

    CAS  Google Scholar 

  • Rodrıguez A, Cabrera G, Godeas A (2006) Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. J Appl Microbiol 100(3):575–586. https://doi.org/10.1111/j.1365-2672.2005.02824.x

    Article  CAS  PubMed  Google Scholar 

  • Schneider RW (1984) Effects of nonpathogenic strains Fusarium oxysporum on celery root infection by F. oxysporum f.sp. apii and a novel use of the Lineweaver-Burke double reciprocal plot technique. Phytopathology 74:646–653

    Google Scholar 

  • Shishido M, Miwa C, Usami T, Amemiya Y, Johnson KB (2005) Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology 95:1072–1080

    PubMed  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    CAS  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Non-pathogenic Fusarium solani represses the biosynthesis of nematicidal compounds in vitro and reduces the biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 37:109–114

    CAS  PubMed  Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, p 336. ISBN-13: 978-9811025754

    Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, UK, p 408. ISBN-9781786390325

    Google Scholar 

  • Taufiq E, Hasim Soekarno BP, Surahman M (2017) Keefektifan Trichoderma sp. dan Fusarium non patogenik dalam mengendalikan penyakit busuk pucuk vanili berwawasan lingkungan. J Littri 23(1):18–25. https://doi.org/10.21082/littri

    Article  Google Scholar 

  • Tayung K, Jha DK (2010) Antimicrobial endophytic fungal assemblages inhabiting bark of Taxus baccata L. of Indo-Burma mega biodiversity hotspot. Indian J Microbiol 50(1):74–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tayung K, Barik BP, Jha DK, Deka DC (2011a) Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2(3):203–213

    Google Scholar 

  • Tayung K, Barik BP, Jagadev PN, Mohapatra UB (2011b) Phylogenetic investigation of endophytic Fusarium strain producing antimicrobial metabolite isolated from Himalayan Yew Bark. Malays J Microbiol 7(1):1–6. https://doi.org/10.21161/mjm.23810

    Article  CAS  Google Scholar 

  • Tezuka N, Makino T (1991) Biological control of Fusarium wilt of strawberry by nonpathogenic fusarium oxysporum isolated from strawberry. Ann Phytopathol 57:506–511

    Google Scholar 

  • Thangavelu R, Jayanthi A (2009) RFLP analysis of rDNA-ITS regions of native non-pathogenic Fusarium oxysporum isolates and their field evaluation for the suppression of Fusarium wilt disease of banana. Australas Plant Pathol 38:13–21

    CAS  Google Scholar 

  • Thongkamngam T, Jaenaksorn T (2016) Efficacy of culture filtrate from Fusarium oxysporum F221-B against plant pathogenic fungi in vitro and Fusarium root rot and wilt disease in hydroponics. Int J Environ Agric Res 12(3):609–622

    Google Scholar 

  • Tsapikounis FA (2015) An integrated evaluation of mycoparasites from organic culture soils as biological control agents of sclerotia of Sclerotinia sclerotiorum in the Laboratory. BAO J Microbiol 1:001

    Google Scholar 

  • Validov SZ, Kamilova FD, Lugtenberg BJJ (2011) Monitoring of pathogenic and nonpathogenic Fusarium oxysporum strains during tomato plant infection. Microb Biotechnol 4(1):82–88

    CAS  PubMed  Google Scholar 

  • Veloso J, Díaz J (2012) Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes. Plant Pathol 61:281–288. https://doi.org/10.1111/j.1365-3059.2011.02516.x

    Article  CAS  Google Scholar 

  • Veloso J, Alabouvette C, Olivain C, Flors V, Pastor V, García T, Díaza J (2016) Modes of action of the protective strain Fo47 in controlling verticillium wilt of pepper. Plant Pathol 65(6):997–1007. https://doi.org/10.1111/ppa.12477

    Article  CAS  Google Scholar 

  • Venugopalan A, Potunuru UR, Dixit M, Srivastava S (2016) Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Technol 206:104–111. https://doi.org/10.1016/j.biortech.2016.01.079

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lin Y, Lin Y, Chung W (2013) Modified primers for the identification of nonpathogenic Fusarium oxysporum isolates that have biological control potential against fusarium wilt of cucumber in Taiwan. PLoS One 8(6):e65093. https://doi.org/10.1371/journal.pone.0065093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weikl F, Ghirardo A, Schnitzler JP, Pritsch K (2016) Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: effects of age, nutrient availability, and co-cultivation. Sci Rep 6:22152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia-Hong H (2007) Biocontrol of root rot disease in Vanilla. PhD thesis, University of Wolverhampton, UK, p 224

    Google Scholar 

  • Xu F, Tao W, Chang L, Guo L (2006) Strain improvement and optimization of the media of taxol-producing fungus Fusarium maire. Biochem Eng J 31:67–73

    CAS  Google Scholar 

  • Yin C, Li P, Li H, Xu L, Zhao J, Shan T, Zhou L (2011) Enhancement of diosgenin production in Dioscorea zingiberensis seedling and cell cultures by beauvericin from the endophytic fungus Fusarium redolens Dzf2. J Med Plants Res 5:6550–6554. https://doi.org/10.5897/JMPR11.921

    Article  CAS  Google Scholar 

  • Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229–230:361–370. https://doi.org/10.1016/j.jhazmat.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yang L, Zhang J, Wu M, Chen W, Jiang D, Li G (2015) Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant Soil 392(1):101–114. https://doi.org/10.1007/s11104-015-2448-y

    Article  CAS  Google Scholar 

  • Zonno MC, Vurro M (2002) Inhibition of germination of Orobanche ramosa seeds by fusarium toxins. Phytoparasitica 30:519–524. https://doi.org/10.1007/BF02979757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Ani, L.K.T. (2019). Secondary Metabolites of Non-pathogenic Fusarium: Scope in Agriculture. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_3

Download citation

Publish with us

Policies and ethics