Skip to main content

Nanoneedles and Nanostructured Surfaces for Studying Cell Interfacing

  • Conference paper
  • First Online:
7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7) (BME 2018)

Abstract

Nanoneedles are a materials platform that facilitates intimate tissue- and cell-interfacing, and drug and nanoparticle delivery. Engineering silicon needles, with <100 nm sharpened tips, allows the response of cells to be studied when the cell membrane and nucleus is placed under extreme curvature. Different cell types respond differently, and are influenced by the geometry of the nanostructures. Topography, material mechanical properties, and surface chemistry all play important roles—with the challenge understanding the impact of each. Here, we briefly review the use of nanoneedles in multiple applications within the Stevens Group, and present the fabrication method used to create biologically relevant nanostructured surfaces. We also discuss the current challenges and future opportunities for nanoneedles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiappini, C., De Rosa, E., Martinez, J.O., et al.: Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 6–13 (2015). https://doi.org/10.1038/nmat4249

    Article  Google Scholar 

  2. Chiappini, C., Martinez, J.O., De Rosa, E., et al.: Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano 9, 5500–5509 (2015). https://doi.org/10.1021/acsnano.5b01490

    Article  Google Scholar 

  3. Robinson, J.T., Jorgolli, M., Shalek, A.K., et al.: Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012). https://doi.org/10.1038/nnano.2011.249

    Article  Google Scholar 

  4. Hanson, L., Zhao, W., Lou, H.-Y., et al.: Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 10, 554–562 (2015). https://doi.org/10.1038/nnano.2015.88

    Article  Google Scholar 

  5. Shalek, A.K., Robinson, J.T., Karp, E.S., et al.: Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. 107, 1870–1875 (2010). https://doi.org/10.1073/pnas.0909350107

    Article  Google Scholar 

  6. Rawson, F.J., Cole, M.T., Hicks, J.M., et al.: Electrochemical communication with the inside of cells using micro-patterned vertical carbon nanofibre electrodes. Sci. Rep. 6, 37672 (2016). https://doi.org/10.1038/srep37672

    Article  Google Scholar 

  7. Vandersarl, J.J., Xu, A.M., Melosh, N.A.: Nanostraws for direct fluidic intracellular access. Nano Lett. 12, 3881–3886 (2012). https://doi.org/10.1021/nl204051v

    Article  Google Scholar 

  8. Chiappini, C., Campagnolo, P., Almeida, C.S., et al.: Mapping local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles. Adv. Mater. 27, 5147–5152 (2015). https://doi.org/10.1002/adma.201501304

    Article  Google Scholar 

  9. Higgins, S.G., Stevens, M.M.: Extracting the contents of living cells. Science 356(80), 379–380 (2017). https://doi.org/10.1126/science.aan0228

  10. Bonde, S., Buch-Månson, N., Rostgaard, K.R., et al.: Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology 25 (2014). https://doi.org/10.1088/0957-4484/25/36/362001

  11. Abbott, J., Ye, T., Qin, L., et al.: CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 1–8 (2017). https://doi.org/10.1038/nnano.2017.3

  12. Tripathy, A., Sen, P., Su, B., Briscoe, W.H.: Natural and bioinspired nanostructured bactericidal surfaces. Adv. Colloid Interface Sci. 248, 85–104 (2017). https://doi.org/10.1016/j.cis.2017.07.030

    Article  Google Scholar 

  13. Crowder, S.W., Leonardo, V., Whittaker, T., et al.: Material cues as potent regulators of epigenetics and stem cell function. Cell Stem. Cell 18, 39–52 (2016). https://doi.org/10.1016/j.stem.2015.12.012

    Article  Google Scholar 

  14. Downing, T.L., Soto, J., Morez, C., et al.: Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12, 1154–1162 (2013). https://doi.org/10.1038/nmat3777

    Article  Google Scholar 

  15. von Erlach, T.C., Bertazzo, S., Wozniak, M.A., et al.: Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat. Mater. (2018). https://doi.org/10.1038/s41563-017-0014-0

  16. Biggs, M.J.P., Fernandez, M., Thomas, D., et al.: The functional response of mesenchymal stem cells to electron-beam patterned elastomeric surfaces presenting micrometer to nanoscale heterogeneous rigidity. Adv. Mater. 1702119, 1–13 (2017). https://doi.org/10.1002/adma.201702119

    Article  Google Scholar 

  17. Zhao, W., Hanson, L., Lou, H.-Y., et al.: Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750–756 (2017). https://doi.org/10.1038/nnano.2017.98

    Article  Google Scholar 

  18. Anderson, S.H.C., Elliott, H., Wallis, D.J., et al.: Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys. Status Solidi Appl. Res. 197, 331–335 (2003). https://doi.org/10.1002/pssa.200306519

    Article  Google Scholar 

  19. Jahed, Z., Zareian, R., Chau, Y.Y., et al.: Differential collective- and single-cell behaviors on silicon micropillar arrays. ACS Appl. Mater. Interfaces 8, 23604–23613 (2016). https://doi.org/10.1021/acsami.6b08668

    Article  Google Scholar 

  20. Cao, Y., Hjort, M., Chen, H., et al.: Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proc. Natl. Acad. Sci. 114, E1866–E1874 (2017). https://doi.org/10.1073/pnas.1615375114

    Article  Google Scholar 

  21. Santoro, F., Zhao, W., Joubert, L.M., et al.: Revealing the cell-material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 11, 8320–8328 (2017). https://doi.org/10.1021/acsnano.7b03494

    Article  Google Scholar 

  22. Gopal, S., Chiappini, C., Penders, J., et al.: Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv Mater 1806788, (2019). https://doi.org/10.1002/adma.201806788

  23. Hansel, C.S., Crowder, S.W., Cooper, S., et al.: Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano (2019). https://doi.org/10.1021/acsnano.8b06998

Download references

Acknowledgements

SGH and MMS acknowledge support from the ERC Seventh Framework Programme Consolidator grant ‘Naturale CG’ (616417). MB acknowledges support from Rosetrees Trust.

Conflict of Interest The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart G. Higgins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Higgins, S.G., Becce, M., Seong, H., Stevens, M.M. (2020). Nanoneedles and Nanostructured Surfaces for Studying Cell Interfacing. In: Van Toi , V., Le, T., Ngo, H., Nguyen, TH. (eds) 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7). BME 2018. IFMBE Proceedings, vol 69. Springer, Singapore. https://doi.org/10.1007/978-981-13-5859-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5859-3_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5858-6

  • Online ISBN: 978-981-13-5859-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics