Skip to main content

Applications of Semiconducting Metal Oxides Gas Sensors

  • Chapter
  • First Online:
Semiconducting Metal Oxides for Gas Sensing

Abstract

Since the discovery of gas sensing properties of metal oxides in the 1960s, semiconducting metal oxides (SMO)-based gas sensors have attracted great attention for its advantages such asĀ  fast and sensitive detection portability and low cost, compared to other conventional techniques. This chapter extensively reviews the recent development of the SMO gas sensors for volatile organic compounds (VOCs) gases including ethanol , acetone , formaldehyde and BTX (benzene, toluene, xylene) ; environmental gases including CO2 , O2 , SO2 , O3 and NH3 ; highly toxic gases including CO , H2S and NO2; and combustible gases including CH4 , H2 and liquefied petroleum gas (LPG) . The gas sensing properties of different metal oxides with diverse structures toward specific target gases have been individually discussed. Promising metal oxide materials for sensitive and selective detection of each gas have been identified. Moreover, design strategies, sensing mechanisms and related applications of SMO materials are also discussed in detail. This chapter gives classification of metal oxides sensors by analyte gas, providing a guideline for targeted design of SMO sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen YJ, Xue XY, Wang YG, Wang TH (2005) Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl Phys Lett 87(23):233503. https://doi.org/10.1063/1.2140091

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Liu Y, Koep E, Liu M (2005) A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem Mater 17(15):3997ā€“4000. https://doi.org/10.1021/cm050451o

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Li K, Li Y, Lu M, Kuo C, Chen L (2009) Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties. Adv Funct Mater 19(15):2453ā€“2456. https://doi.org/10.1002/adfm.200801774

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Liu S, Xie M, Li Y, Guo X, Ji W, Ding W, Au C (2010) Novel sea urchin-like hollow coreā€“shell SnO2 superstructures: facile synthesis and excellent ethanol sensing performance. Sens Actuators B Chem 151(1):229ā€“235. https://doi.org/10.1016/j.snb.2010.09.015

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuators B Chem 162(1):237ā€“243. https://doi.org/10.1016/j.snb.2011.12.073

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Tian S, Yang F, Zeng D, Xie C (2012) Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J Phys Chem C 116(19):10586ā€“10591. https://doi.org/10.1021/jp2123778

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Meng F, Ge S, Jia Y, Sun B, Sun Y, Wang C, Wu H, Jin Z, Li M (2015) Interlaced nanoflake-assembled flower-like hierarchical ZnO microspheres prepared by bisolvents and their sensing properties to ethanol. J Alloy Compd 632:645ā€“650. https://doi.org/10.1016/j.jallcom.2015.01.289

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Zhou X, Zhu Y, Luo W, Ren Y, Xu P, Elzatahry AA, Cheng X, Alghamdi A, Deng Y, Zhao D (2016) Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. J Mater Chem A 4(39):15064ā€“15071. https://doi.org/10.1039/C6TA05687C

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Xiangfeng C, Caihong W, Dongli J, Chenmou Z (2004) Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. Chem Phys Lett 399(4ā€“6):461ā€“464. https://doi.org/10.1016/j.cplett.2004.10.053

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Liu J, Wang X, Peng Q, Li Y (2006) Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sens Actuators B Chem 115(1):481ā€“487. https://doi.org/10.1016/j.snb.2005.10.012

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Pandeeswari R, Karn RK, Jeyaprakash BG (2014) Ethanol sensing behaviour of solā€“gel dip-coated TiO2 thin films. Sens Actuators B Chem 194:470ā€“477. https://doi.org/10.1016/j.snb.2013.12.122

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Yang C, Su X, Xiao F, Jian J, Wang J (2011) Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method. Sens Actuators B Chem 158(1):299ā€“303. https://doi.org/10.1016/j.snb.2011.06.024

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Zoolfakar AS, Ahmad MZ, Rani RA, Ou JZ, Balendhran S, Zhuiykov S, Latham K, Wlodarski W, Kalantar-zadeh K (2013) Nanostructured copper oxides as ethanol vapour sensors. Sens Actuators B Chem 185:620ā€“627. https://doi.org/10.1016/j.snb.2013.05.042

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Cho NG, Hwang I, Kim H, Lee J, Kim I (2011) Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sens Actuators B Chem 155(1):366ā€“371. https://doi.org/10.1016/j.snb.2010.12.031

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Hwang I, Choi J, Woo H, Kim S, Jung S, Seong T, Kim I, Lee J (2011) Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl Mater Inter 3(8):3140ā€“3145. https://doi.org/10.1021/am200647f

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Lin Y, Hsueh Y, Lee P, Wang C, Wu JM, Perng T, Shih HC (2011) Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. J Mater Chem 21(28):10552. https://doi.org/10.1039/c1jm10785b

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Van Hieu N, Duc NAP, Trung T, Tuan MA, Chien ND (2010) Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: a competitive sensor for ethanol and liquid petroleum gas. Sens Actuators B Chem 144(2):450ā€“456. https://doi.org/10.1016/j.snb.2009.03.043

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta SK (2013) Ethanol sensing properties of pure and Au modified ZnO nanowires. Sens Actuators B Chem 187:313ā€“318. https://doi.org/10.1016/j.snb.2012.11.079

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Lou Z, Deng J, Wang L, Wang L, Fei T, Zhang T (2013) Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens Actuators B Chem 176:323ā€“329. https://doi.org/10.1016/j.snb.2012.09.027

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Wang Y, Lin Y, Jiang D, Li F, Li C, Zhu L, Wen S, Ruan S (2015) Special nanostructure control of ethanol sensing characteristics based on Au@In2O3 sensor with good selectivity and rapid response. RSC Adv 5(13):9884ā€“9989. https://doi.org/10.1039/c4ra14879g

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X (2011) Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun 47(1):565ā€“567. https://doi.org/10.1039/C0CC02398A

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi S, Neri G (2015) Synthesis, characterization and gas sensing properties of Ag@Ī±-Fe2O3 core-shell nanocomposites. Nanomaterials-Basel 5(2):737ā€“749. https://doi.org/10.3390/nano5020737

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Hu P, Du G, Zhou W, Cui J, Lin J, Liu H, Liu D, Wang J, Chen S (2010) Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering. ACS Appl Mater Inter 2(11):3263ā€“3269. https://doi.org/10.1021/am100707h

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Kim S, Hwang I, Na CW, Kim I, Kang YC, Lee J (2011) Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres. J Mater Chem 21(46):18560ā€“18567. https://doi.org/10.1039/c1jm14252f

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Wan Q, Wang TH (2005) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem Commun 30:3841. https://doi.org/10.1039/b504094a

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Li LM, Li CC, Zhang J, Du ZF, Zou BS, Yu HC, Wang YG, Wang TH (2007) Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires. Nanotechnology 18(22):225504. https://doi.org/10.1088/0957-4484/18/22/225504

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18(13):1969ā€“1976. https://doi.org/10.1002/adfm.200700784

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Van Hieu N, Kim H, Ju B, Lee J (2008) Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sens Actuators B Chem 133(1):228ā€“234. https://doi.org/10.1016/j.snb.2008.02.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Zhu CL, Chen YJ, Wang RX, Wang LJ, Cao MS, Shi XL (2009) Synthesis and enhanced ethanol sensing properties of Ī±-Fe2O3/ZnO heteronanostructures. Sens Actuators B Chem 140(1):185ā€“189. https://doi.org/10.1016/j.snb.2009.04.011

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Yin M, Liu M, Liu S (2013) Development of an alcohol sensor based on ZnO nanorods synthesized using a scalable solvothermal method. Sens Actuators B Chem 185:735ā€“742. https://doi.org/10.1016/j.snb.2013.05.055

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Bie L, Yan X, Yin J, Duan Y, Yuan Z (2007) Nanopillar ZnO gas sensor for hydrogen and ethanol. Sens Actuators B Chem 126(2):604ā€“608. https://doi.org/10.1016/j.snb.2007.04.011

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Rao J, Yu A, Shao C, Zhou X (2012) Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property. ACS Appl Mater Inter 4(10):5346ā€“5352. https://doi.org/10.1021/am3012966

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Chen Y, Zhu CL, Xiao G (2006) Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology 17(18):4537ā€“4541. https://doi.org/10.1088/0957-4484/17/18/002

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Xu J, Chen Y, Shen J (2008) Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Mater Lett 62(8ā€“9):1363ā€“1365. https://doi.org/10.1016/j.matlet.2007.08.054

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Vomiero A, Bianchi S, Comini E, Faglia G, Ferroni M, Poli N, Sberveglieri G (2007) In2O3 nanowires for gas sensors: morphology and sensing characterisation. Thin Solid Films 515(23):8356ā€“8359. https://doi.org/10.1016/j.tsf.2007.03.034

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Nguyen H, El-Safty SA (2011) Meso- and macroporous Co3O4 nanorods for effective VOC gas sensors. J Phys Chem C 115(17):8466ā€“8474. https://doi.org/10.1021/jp1116189

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Chen D, Hou X, Li T, Yin L, Fan B, Wang H, Li X, Xu H, Lu H, Zhang R, Sun J (2011) Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens Actuators B Chem 153(2):373ā€“381. https://doi.org/10.1016/j.snb.2010.11.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Karmaoui M, Leonardi SG, Latino M, Tobaldi DM, Donato N, Pullar RC, Seabra MP, Labrincha JA, Neri G (2016) Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10Ā ppb) acetone sensor for biomedical applications. Sens Actuators B Chem 230:697ā€“705. https://doi.org/10.1016/j.snb.2016.02.100

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Shin J, Choi S, Lee I, Youn D, Park CO, Lee J, Tuller HL, Kim I (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23(19):2357ā€“2367. https://doi.org/10.1002/adfm.201202729

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens Actuators B Chem 209:180ā€“185. https://doi.org/10.1016/j.snb.2014.11.106

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Righettoni M, Tricoli A, Pratsinis SE (2010) Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 82(9):3581ā€“3587. https://doi.org/10.1021/ac902695n

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Bai X, Ji H, Gao P, Zhang Y, Sun X (2014) Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens Actuators B Chem 193:100ā€“106. https://doi.org/10.1016/j.snb.2013.11.059

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. HernĆ”ndez PT, Naik AJT, Newton EJ, Hailes SMV, Parkin IP (2014) Assessing the potential of metal oxide semiconducting gas sensors for illicit drug detection markers. J Mater Chem A 2(23):8952ā€“8960. https://doi.org/10.1039/C4TA00357H

    ArticleĀ  Google ScholarĀ 

  44. Kaneti YV, Moriceau J, Liu M, Yuan Y, Zakaria Q, Jiang X, Yu A (2015) Hydrothermal synthesis of ternary Ī±-Fe2O3ā€“ZnOā€“Au nanocomposites with high gas-sensing performance. Sens Actuators B Chem 209:889ā€“897. https://doi.org/10.1016/j.snb.2014.12.065

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Biswal RC (2011) Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens Actuators B Chem 157(1):183ā€“188. https://doi.org/10.1016/j.snb.2011.03.047

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Shan H, Liu C, Liu L, Li S, Wang L, Zhang X, Bo X, Chi X (2013) Highly sensitive acetone sensors based on La-doped Ī±-Fe2O3 nanotubes. Sens Actuators B Chem 184:243ā€“247. https://doi.org/10.1016/j.snb.2013.04.088

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Zeng Y, Zhang T, Yuan M, Kang M, Lu G, Wang R, Fan H, He Y, Yang H (2009) Growth and selective acetone detection based on ZnO nanorod arrays. Sens Actuators B Chem 143(1):93ā€“98. https://doi.org/10.1016/j.snb.2009.08.053

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Li X, Chang Y, Long Y (2012) Influence of Sn doping on ZnO sensing properties for ethanol and acetone. Mater Sci Eng C 32(4):817ā€“821. https://doi.org/10.1016/j.msec.2012.01.032

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Li Z, Zhao Q, Fan W, Zhan J (2011) Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. Nanoscale 3(4):1646ā€“1652. https://doi.org/10.1039/c0nr00728e

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Tian S, Ding X, Zeng D, Wu J, Zhang S, Xie C (2013) A low temperature gas sensor based on Pd-functionalized mesoporous SnO2 fibers for detecting trace formaldehyde. RSC Adv 3(29):11823. https://doi.org/10.1039/c3ra40567b

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Lee Y, Lee K, Lee D, Jeong Y, Lee HS, Choa Y (2009) Preparation and gas sensitivity of SnO2 nanopowder homogenously doped with Pt nanoparticles. Curr Appl Phys 9(1):S79ā€“S81. https://doi.org/10.1016/j.cap.2008.08.024

    ArticleĀ  Google ScholarĀ 

  52. Zheng Y, Wang J, Yao P (2011) Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens Actuators B Chem 156(2):723ā€“730. https://doi.org/10.1016/j.snb.2011.02.026

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Han N, Wu X, Zhang D, Shen G, Liu H, Chen Y (2011) CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor. Sens Actuators B Chem 152(2):324ā€“329. https://doi.org/10.1016/j.snb.2010.12.029

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. Peng L, Zhai J, Wang D, Zhang Y, Wang P, Zhao Q, Xie T (2010) Size- and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light. Sens Actuators B Chem 148(1):66ā€“73. https://doi.org/10.1016/j.snb.2010.04.045

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Castro-Hurtado I, HerrĆ”n J, Ga Mandayo G, CastaƱo E (2012) SnO2-nanowires grown by catalytic oxidation of tin sputtered thin films for formaldehyde detection. Thin Solid Films 520(14):4792ā€“4796. https://doi.org/10.1016/j.tsf.2011.10.140

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Chung F, Wu R, Cheng F (2014) Fabrication of a Au@SnO2 coreā€“shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 190:1ā€“7. https://doi.org/10.1016/j.snb.2013.08.037

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. Wang J, Zhang P, Qi J, Yao P (2009) Silicon-based micro-gas sensors for detecting formaldehyde. Sens Actuators B Chem 136(2):399ā€“404. https://doi.org/10.1016/j.snb.2008.12.056

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Lv P, Tang ZA, Yu J, Zhang FT, Wei GF, Huang ZX, Hu Y (2008) Study on a micro-gas sensor with SnO2ā€“NiO sensitive film for indoor formaldehyde detection. Sens Actuators B Chem 132(1):74ā€“80. https://doi.org/10.1016/j.snb.2008.01.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Du H, Wang J, Su M, Yao P, Zheng Y, Yu N (2012) Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process. Sens Actuators B Chem 166ā€“167:746ā€“752. https://doi.org/10.1016/j.snb.2012.03.055

    ArticleĀ  CASĀ  Google ScholarĀ 

  60. Sun P, Zhou X, Wang C, Shimanoe K, Lu G, Yamazoe N (2014) Hollow SnO2/Ī±-Fe2O3 spheres with a double-shell structure for gas sensors. J Mater Chem A 2(5):1302ā€“1308. https://doi.org/10.1039/C3TA13707D

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Chu X, Chen T, Zhang W, Zheng B, Shui H (2009) Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens Actuators B Chem 142(1):49ā€“54. https://doi.org/10.1016/j.snb.2009.07.049

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Xie C, Xiao L, Hu M, Bai Z, Xia X, Zeng D (2010) Fabrication and formaldehyde gas-sensing property of ZnOā€“MnO2 coplanar gas sensor arrays. Sens Actuators B Chem 145(1):457ā€“463. https://doi.org/10.1016/j.snb.2009.12.052

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Han N, Tian Y, Wu X, Chen Y (2009) Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens Actuators B Chem 138(1):228ā€“235. https://doi.org/10.1016/j.snb.2009.01.054

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Chung F, Zhu Z, Luo P, Wu R, Li W (2014) Au@ZnO coreā€“shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 199:314ā€“319. https://doi.org/10.1016/j.snb.2014.04.004

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Lee C, Chiang C, Wang Y, Ma R (2007) A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sens Actuators B Chem 122(2):503ā€“510. https://doi.org/10.1016/j.snb.2006.06.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Castro-Hurtado I, HerrĆ”n J, Mandayo GG, CastaƱo E (2011) Studies of influence of structural properties and thickness of NiO thin films on formaldehyde detection. Thin Solid Films 520(3):947ā€“952. https://doi.org/10.1016/j.tsf.2011.04.180

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Castro-Hurtado I, MalagĆ¹ C, Morandi S, PĆ©rez N, Mandayo GG, CastaƱo E (2013) Properties of NiO sputtered thin films and modeling of their sensing mechanism under formaldehyde atmospheres. Acta Mater 61(4):1146ā€“1153. https://doi.org/10.1016/j.actamat.2012.10.024

    ArticleĀ  CASĀ  Google ScholarĀ 

  68. Liu Y, Zhu G, Ge B, Zhou H, Yuan A, Shen X (2012) Concave Co3O4 octahedral mesocrystal: polymer-mediated synthesis and sensing properties. CrystEngComm 14(19):6264ā€“6627. https://doi.org/10.1039/c2ce25788b

    ArticleĀ  CASĀ  Google ScholarĀ 

  69. Yang W, Wan P, Zhou X, Hu J, Guan Y, Feng L (2014) Self-assembled In2O3 truncated octahedron string and its sensing properties for formaldehyde. Sens Actuators B Chem 201:228ā€“233. https://doi.org/10.1016/j.snb.2014.05.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Zhu BL, Xie CS, Wang WY, Huang KJ, Hu JH (2004) Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Mater Lett 58(5):624ā€“629. https://doi.org/10.1016/S0167-577X(03)00582-2

    ArticleĀ  CASĀ  Google ScholarĀ 

  71. Elmi I, Zampolli S, Cozzani E, Mancarella F, Cardinali GC (2008) Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sens Actuators B Chem 135(1):342ā€“351. https://doi.org/10.1016/j.snb.2008.09.002

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Wang L, Zhang R, Zhou T, Lou Z, Deng J, Zhang T (2016) Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene (C6H6) and nitrogen dioxide (NO2) detection. Sens Actuators B Chem 223:311ā€“317. https://doi.org/10.1016/j.snb.2015.09.114

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Vaishnav VS, Patel SG, Panchal JN (2015) Development of ITO thin film sensor for detection of benzene. Sens Actuators B Chem 206:381ā€“388. https://doi.org/10.1016/j.snb.2014.07.037

    ArticleĀ  CASĀ  Google ScholarĀ 

  74. Liu S, Wang Z, Zhao H, Fei T, Zhang T (2014) Ordered mesoporous Co3O4 for high-performance toluene sensing. Sens Actuators B Chem 197:342ā€“349. https://doi.org/10.1016/j.snb.2014.03.007

    ArticleĀ  CASĀ  Google ScholarĀ 

  75. Wang C, Cheng X, Zhou X, Sun P, Hu X, Shimanoe K, Lu G, Yamazoe N (2014) Hierarchical Ī±-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl Mater Inter 6(15):12031ā€“12037. https://doi.org/10.1021/am501063z

    ArticleĀ  CASĀ  Google ScholarĀ 

  76. Kim H, Yoon J, Choi K, Jang HW, Umar A, Lee J (2013) Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5(15):7066. https://doi.org/10.1039/c3nr01281f

    ArticleĀ  CASĀ  Google ScholarĀ 

  77. Hong YJ, Yoon J, Lee J, Kang YC (2014) One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors. Chem Eur J 20(10):2737ā€“2741. https://doi.org/10.1002/chem.201304502

    ArticleĀ  CASĀ  Google ScholarĀ 

  78. Ke M, Lee M, Lee C, Fu L (2009) A MEMS-based benzene gas sensor with a self-heating WO3 sensing layer. Sensors-Basel 9(4):2895ā€“2906. https://doi.org/10.3390/s90402895

    ArticleĀ  CASĀ  Google ScholarĀ 

  79. Park J, Shen X, Wang G (2009) Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sens Actuators B Chem 136(2):494ā€“498. https://doi.org/10.1016/j.snb.2008.11.041

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Bai Z, Xie C, Zhang S, Zhang L, Zhang Q, Xu W, Xu J (2010) Microstructure and gas sensing properties of the ZnO thick film treated by hydrothermal method. Sens Actuators B Chem 151(1):107ā€“113. https://doi.org/10.1016/j.snb.2010.09.039

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Wang L, Lou Z, Fei T, Zhang T (2011) Zinc oxide core-shell hollow microspheres with multi-shelled architecture for gas sensor applications. J Mater Chem 21(48):19331ā€“19336. https://doi.org/10.1039/c1jm13354c

    ArticleĀ  CASĀ  Google ScholarĀ 

  82. Qu F, Wang Y, Liu J, Wen S, Chen Y, Ruan S (2014) Fe3O4ā€“NiO coreā€“shell composites: hydrothermal synthesis and toluene sensing properties. Mater Lett 132:167ā€“170. https://doi.org/10.1016/j.matlet.2014.06.060

    ArticleĀ  CASĀ  Google ScholarĀ 

  83. Shan H, Liu C, Liu L, Zhang J, Li H, Liu Z, Zhang X, Bo X, Chi X (2013) Excellent toluene sensing properties of SnO2ā€“Fe2O3 interconnected nanotubes. ACS Appl Mater Inter 5(13):6376ā€“6380. https://doi.org/10.1021/am4015082

    ArticleĀ  CASĀ  Google ScholarĀ 

  84. Cao J, Wang Z, Wang R, Zhang T (2014) Electrostatic sprayed Cr-loaded NiO core-in-hollow-shell structured micro/nanospheres with ultra-selectivity and sensitivity for xylene. CrystEngComm 16(33):7731. https://doi.org/10.1039/C4CE00969J

    ArticleĀ  CASĀ  Google ScholarĀ 

  85. Akiyama T, Ishikawa Y, Hara K (2013) Xylene sensor using double-layered thin film and Ni-deposited porous alumina. Sens Actuators B Chem 181:348ā€“352. https://doi.org/10.1016/j.snb.2013.01.024

    ArticleĀ  CASĀ  Google ScholarĀ 

  86. Sun C, Su X, Xiao F, Niu C, Wang J (2011) Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties. Sens Actuators B Chem 157(2):681ā€“685. https://doi.org/10.1016/j.snb.2011.05.039

    ArticleĀ  CASĀ  Google ScholarĀ 

  87. Michel CR, LĆ³pez-Contreras NL, MartĆ­nez-Preciado AH (2013) Gas sensing properties of Gd2O3 microspheres prepared in aqueous media containing pectin. Sens Actuators B Chem 177:390ā€“396. https://doi.org/10.1016/j.snb.2012.11.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  88. Michel CR, MartĆ­nez-Preciado AH, Contreras NLL (2013) Gas sensing properties of Nd2O3 nanostructured microspheres. Sens Actuators B Chem 184:8ā€“14. https://doi.org/10.1016/j.snb.2013.04.044

    ArticleĀ  CASĀ  Google ScholarĀ 

  89. Jinesh KB, Dam VAT, Swerts J, de Nooijer C, van Elshocht S, Brongersma SH, Crego-Calama M (2011) Room-temperature CO2 sensing using metalā€“insulatorā€“semiconductor capacitors comprising atomic-layer-deposited La2O3 thin films. Sens Actuators B Chem 156(1):276ā€“282. https://doi.org/10.1016/j.snb.2011.04.033

    ArticleĀ  CASĀ  Google ScholarĀ 

  90. Trung DD, Toan LD, Hong HS, Lam TD, Trung T, Van Hieu N (2012) Selective detection of carbon dioxide using LaOCl-functionalized SnO2 nanowires for air-quality monitoring. Talanta 88:152ā€“159. https://doi.org/10.1016/j.talanta.2011.10.024

    ArticleĀ  CASĀ  Google ScholarĀ 

  91. HerrĆ”n J, Mandayo G, PĆ©rez N, CastaƱo E, Prim A, Pellicer E, Andreu T, PeirĆ³ F, Cornet A, Morante JR (2008) On the structural characterization of BaTiO3ā€“CuO as CO2 sensing material. Sens Actuators B Chem 133(1):315ā€“320. https://doi.org/10.1016/j.snb.2008.02.052

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. HerrĆ”n J, Ga Mandayo G, CastaƱo E (2009) Semiconducting BaTiO3ā€“CuO mixed oxide thin films for CO2 detection. Thin Solid Films 517(22):6192ā€“6197. https://doi.org/10.1016/j.tsf.2009.04.007

    ArticleĀ  CASĀ  Google ScholarĀ 

  93. Izu N, Oh-hori N, Itou M, Shin W, Matsubara I, Murayama N (2005) Resistive oxygen gas sensors based on Ce1āˆ’xZrxO2 nano powder prepared using new precipitation method. Sens Actuators B Chem 108(1ā€“2):238ā€“243. https://doi.org/10.1016/j.snb.2004.11.064

    ArticleĀ  CASĀ  Google ScholarĀ 

  94. CastaƱeda L (2007) Effects of palladium coatings on oxygen sensors of titanium dioxide thin films. Mater Sci Eng B 139(2ā€“3):149ā€“154. https://doi.org/10.1016/j.mseb.2007.01.046

    ArticleĀ  CASĀ  Google ScholarĀ 

  95. Sotter E, Vilanova X, Llobet E, Vasiliev A, Correig X (2007) Thick film titania sensors for detecting traces of oxygen. Sens Actuators B Chem 127(2):567ā€“579. https://doi.org/10.1016/j.snb.2007.05.010

    ArticleĀ  CASĀ  Google ScholarĀ 

  96. Al-Hardan N, Abdullah MJ, Abdul Aziz A, Ahmad H (2010) Low operating temperature of oxygen gas sensor based on undoped and Cr-doped ZnO films. Appl Surf Sci 256(11):3468ā€“3471. https://doi.org/10.1016/j.apsusc.2009.12.055

    ArticleĀ  CASĀ  Google ScholarĀ 

  97. Kaneko H, Okamura T, Taimatsu H, Matsuki Y, Nishida H (2005) Performance of a miniature zirconia oxygen sensor with a Pdā€“PdO internal reference. Sens Actuators B Chem 108(1ā€“2):331ā€“334. https://doi.org/10.1016/j.snb.2004.12.110

    ArticleĀ  CASĀ  Google ScholarĀ 

  98. Hu Y, Tan OK, Pan JS, Huang H, Cao W (2005) The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sens Actuators B Chem 108(1ā€“2):244ā€“249. https://doi.org/10.1016/j.snb.2004.10.053

    ArticleĀ  CASĀ  Google ScholarĀ 

  99. Minaee H, Mousavi SH, Haratizadeh H, de Oliveira PW (2013) Oxygen sensing properties of zinc oxide nanowires, nanorods, and nanoflowers: the effect of morphology and temperature. Thin Solid Films 545:8ā€“12. https://doi.org/10.1016/j.tsf.2013.05.155

    ArticleĀ  CASĀ  Google ScholarĀ 

  100. Ahmed F, Arshi N, Anwar MS, Danish R, Koo BH (2013) Mn-doped ZnO nanorod gas sensor for oxygen detection. Curr Appl Phys 13:S64ā€“S68. https://doi.org/10.1016/j.cap.2012.12.029

    ArticleĀ  Google ScholarĀ 

  101. Shimizu Y, Matsunaga N, Hyodo T, Egashira M (2001) Improvement of SO2 sensing properties of WO3 by noble metal loading. Sens Actuators B Chem 77(1ā€“2):35ā€“40. https://doi.org/10.1016/S0925-4005(01)00669-4

    ArticleĀ  CASĀ  Google ScholarĀ 

  102. Hidalgo P, Castro RHR, Coelho ACV, GouvĆŖa D (2005) Surface segregation and consequent SO2 sensor response in SnO2ā€“NiO. Chem Mater 17(16):4149ā€“4153. https://doi.org/10.1021/cm049020g

    ArticleĀ  CASĀ  Google ScholarĀ 

  103. Liang X, Zhong T, Quan B, Wang B, Guan H (2008) Solid-state potentiometric SO2 sensor combining NASICON with V2O5-doped TiO2 electrode. Sens Actuators B Chem 134(1):25ā€“30. https://doi.org/10.1016/j.snb.2008.04.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  104. Das S, Chakraborty S, Parkash O, Kumar D, Bandyopadhyay S, Samudrala SK, Sen A, Maiti HS (2008) Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta 75(2):385ā€“389. https://doi.org/10.1016/j.talanta.2007.11.010

    ArticleĀ  CASĀ  Google ScholarĀ 

  105. Stankova M, Vilanova X, Calderer J, Llobet E, Ivanov P, GrĆ cia I, CanĆ© C, Correig X (2004) Detection of SO2 and H2S in CO2 stream by means of WO3-based micro-hotplate sensors. Sens Actuators B Chem 102(2):219ā€“225. https://doi.org/10.1016/j.snb.2004.04.030

    ArticleĀ  CASĀ  Google ScholarĀ 

  106. Bendahan M, Boulmani R, Seguin J, Aguir K (2004) Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O concentration in the sputtering gas, and working temperature. Sens Actuators B Chem 100(3):320ā€“324. https://doi.org/10.1016/j.snb.2004.01.023

    ArticleĀ  CASĀ  Google ScholarĀ 

  107. Korotcenkov G, Blinov I, Ivanov M, Stetter JR (2007) Ozone sensors on the base of SnO2 films deposited by spray pyrolysis. Sens Actuators B Chem 120(2):679ā€“686. https://doi.org/10.1016/j.snb.2006.03.029

    ArticleĀ  CASĀ  Google ScholarĀ 

  108. Da Silva LF, Catto AC, Avansi W, Cavalcante LS, AndrĆ©s J, Aguir K, Mastelaro VR, Longo E (2014) A novel ozone gas sensor based on one-dimensional (1D) Ī±-Ag2WO4 nanostructures. Nanoscale 6(8):4058ā€“4062. https://doi.org/10.1039/C3NR05837A

    ArticleĀ  Google ScholarĀ 

  109. Deng Z, Fang X, Li D, Zhou S, Tao R, Dong W, Wang T, Meng G, Zhu X (2009) Room temperature ozone sensing properties of p-type transparent oxide CuCrO2. J Alloy Compd 484(1ā€“2):619ā€“621. https://doi.org/10.1016/j.jallcom.2009.05.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  110. Vallejos S, Khatko V, Aguir K, Ngo KA, Calderer J, GrĆ cia I, CanĆ© C, Llobet E, Correig X (2007) Ozone monitoring by micro-machined sensors with WO3 sensing films. Sens Actuators B Chem 126(2):573ā€“578. https://doi.org/10.1016/j.snb.2007.04.012

    ArticleĀ  CASĀ  Google ScholarĀ 

  111. Minh VA, Tuan LA, Huy TQ, Hung VN, Quy NV (2013) Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl Surf Sci 265:458ā€“464. https://doi.org/10.1016/j.apsusc.2012.11.028

    ArticleĀ  CASĀ  Google ScholarĀ 

  112. Tang H, Yan M, Zhang H, Li S, Ma X, Wang M, Yang D (2006) A selective NH3 gas sensor based on Fe2O3ā€“ZnO nanocomposites at room temperature. Sens Actuators B Chem 114(2):910ā€“915. https://doi.org/10.1016/j.snb.2005.08.010

    ArticleĀ  CASĀ  Google ScholarĀ 

  113. Hieu NV, Quang VV, Hoa ND, Kim D (2011) Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route. Curr Appl Phys 11(3):657ā€“661. https://doi.org/10.1016/j.cap.2010.11.002

    ArticleĀ  Google ScholarĀ 

  114. Van Hieu N, Thuy LTB, Chien ND (2008) Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens Actuators B Chem 129(2):888ā€“895. https://doi.org/10.1016/j.snb.2007.09.088

    ArticleĀ  CASĀ  Google ScholarĀ 

  115. Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR (2007) Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv Mater 19(12):1641ā€“1645. https://doi.org/10.1002/adma.200602128

    ArticleĀ  CASĀ  Google ScholarĀ 

  116. Zhang J, Wang S, Wang Y, Xu M, Xia H, Zhang S, Huang W, Guo X, Wu S (2009) ZnO hollow spheres: preparation, characterization, and gas sensing properties. Sens Actuators B Chem 139(2):411ā€“417. https://doi.org/10.1016/j.snb.2009.03.014

    ArticleĀ  CASĀ  Google ScholarĀ 

  117. Wang Y, Liu J, Cui X, Gao Y, Ma J, Sun Y, Sun P, Liu F, Liang X, Zhang T, Lu G (2017) NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens Actuators B Chem 238:473ā€“481. https://doi.org/10.1016/j.snb.2016.07.085

    ArticleĀ  CASĀ  Google ScholarĀ 

  118. Mashock M, Yu K, Cui S, Mao S, Lu G, Chen J (2012) Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized pā€“n junctions on their surfaces. ACS Appl Mater Inter 4(8):4192ā€“4199. https://doi.org/10.1021/am300911z

    ArticleĀ  CASĀ  Google ScholarĀ 

  119. Tai H, Jiang Y, Xie G, Yu J, Chen X, Ying Z (2008) Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sens Actuators B Chem 129(1):319ā€“326. https://doi.org/10.1016/j.snb.2007.08.013

    ArticleĀ  CASĀ  Google ScholarĀ 

  120. Wang K, Zhao T, Lian G, Yu Q, Luan C, Wang Q, Cui D (2013) Room temperature CO sensor fabricated from Pt-loaded SnO2 porous nanosolid. Sens Actuators B Chem 184:33ā€“39. https://doi.org/10.1016/j.snb.2013.04.054

    ArticleĀ  CASĀ  Google ScholarĀ 

  121. Wang C, Chen M (2010) Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors. Sens Actuators B Chem 150(1):360ā€“366. https://doi.org/10.1016/j.snb.2010.06.060

    ArticleĀ  CASĀ  Google ScholarĀ 

  122. Wu R, Wu J, Yu M, Tsai T, Yeh C (2008) Promotive effect of CNT on Co3O4ā€“SnO2 in a semiconductor-type CO sensor working at room temperature. Sens Actuators B Chem 131(1):306ā€“312. https://doi.org/10.1016/j.snb.2007.11.033

    ArticleĀ  CASĀ  Google ScholarĀ 

  123. Khoang ND, Hong HS, Trung DD, Duy NV, Hoa ND, Thinh DD, Hieu NV (2013) On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sens Actuators B Chem 181:529ā€“536. https://doi.org/10.1016/j.snb.2013.02.047

    ArticleĀ  CASĀ  Google ScholarĀ 

  124. Al-Kuhaili MF, Durrani SMA, Bakhtiari IA (2008) Carbon monoxide gas-sensing properties of CeO2ā€“ZnO thin films. Appl Surf Sci 255(5):3033ā€“3039. https://doi.org/10.1016/j.apsusc.2008.08.058

    ArticleĀ  CASĀ  Google ScholarĀ 

  125. Yu M, Wu R, Chavali M (2011) Effect of ā€˜Ptā€™ loading in ZnOā€“CuO hetero-junction material sensing carbon monoxide at room temperature. Sens Actuators B Chem 153(2):321ā€“328. https://doi.org/10.1016/j.snb.2010.09.071

    ArticleĀ  CASĀ  Google ScholarĀ 

  126. Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28(6):1705268. https://doi.org/10.1002/adfm.201705268

    ArticleĀ  CASĀ  Google ScholarĀ 

  127. Wagner T, Waitz T, Roggenbuck J, Frƶba M, Kohl CD, Tiemann M (2007) Ordered mesoporous ZnO for gas sensing. Thin Solid Films 515(23):8360ā€“8363. https://doi.org/10.1016/j.tsf.2007.03.021

    ArticleĀ  CASĀ  Google ScholarĀ 

  128. Li W, Shen C, Wu G, Ma Y, Gao Z, Xia X, Du G (2011) New model for a Pd-doped SnO2-based CO gas sensor and catalyst studied by online in-situ x-ray photoelectron spectroscopy. J Phys Chem C 115(43):21258ā€“21263. https://doi.org/10.1021/jp2068733

    ArticleĀ  CASĀ  Google ScholarĀ 

  129. Patil D, Patil P, Subramanian V, Joy PA, Potdar HS (2010) Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81(1ā€“2):37ā€“43. https://doi.org/10.1016/j.talanta.2009.11.034

    ArticleĀ  CASĀ  Google ScholarĀ 

  130. Ramgir NS, Ganapathi SK, Kaur M, Datta N, Muthe KP, Aswal DK, Gupta SK, Yakhmi JV (2010) Sub-ppm H2S sensing at room temperature using CuO thin films. Sens Actuators B Chem 151(1):90ā€“96. https://doi.org/10.1016/j.snb.2010.09.043

    ArticleĀ  CASĀ  Google ScholarĀ 

  131. Zhang F, Zhu A, Luo Y, Tian Y, Yang J, Qin Y (2010) CuO nanosheets for sensitive and selective determination of H2S with high recovery ability. J Phys Chem C 114(45):19214ā€“19219. https://doi.org/10.1021/jp106098z

    ArticleĀ  CASĀ  Google ScholarĀ 

  132. Li X, Wang Y, Lei Y, Gu Z (2012) Highly sensitive H2S sensor based on template-synthesized CuO nanowires. RSC Adv 2(6):2302. https://doi.org/10.1039/c2ra00718e

    ArticleĀ  CASĀ  Google ScholarĀ 

  133. Kim H, Jin C, Park S, Kim S, Lee C (2012) H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens Actuators B Chem 161(1):594ā€“599. https://doi.org/10.1016/j.snb.2011.11.006

    ArticleĀ  CASĀ  Google ScholarĀ 

  134. Xue X, Xing L, Chen Y, Shi S, Wang Y, Wang T (2008) Synthesis and H2S sensing properties of CuOā€“SnO2 core/shell PN-junction nanorods. J Phys Chem C 112(32):12157ā€“12160. https://doi.org/10.1021/jp8037818

    ArticleĀ  CASĀ  Google ScholarĀ 

  135. Li Y, Luo W, Qin N, Dong J, Wei J, Li W, Feng S, Chen J, Xu J, Elzatahry AA, Es-Saheb MH, Deng Y, Zhao D (2014) Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew Chem Int Ed 53(34):9035ā€“9040. https://doi.org/10.1002/anie.201403817

    ArticleĀ  CASĀ  Google ScholarĀ 

  136. Xiao X, Liu L, Ma J, Ren Y, Cheng X, Zhu Y, Zhao D, Elzatahry AA, Alghamdi A, Deng Y (2018) Ordered mesoporous tin oxide semiconductors with large pores and crystallized walls for high-performance gas sensing. ACS Appl Mater Inter 10(2):1871ā€“1880. https://doi.org/10.1021/acsami.7b18830

    ArticleĀ  CASĀ  Google ScholarĀ 

  137. Qin Y, Zhang F, Chen Y, Zhou Y, Li J, Zhu A, Luo Y, Tian Y, Yang J (2012) Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J Phys Chem C 116(22):11994ā€“12000. https://doi.org/10.1021/jp212029n

    ArticleĀ  CASĀ  Google ScholarĀ 

  138. Chen J, Wang K, Hartman L, Zhou W (2008) H2S detection by vertically aligned CuO nanowire array sensors. J Phys Chem C 112(41):16017ā€“16021. https://doi.org/10.1021/jp805919t

    ArticleĀ  CASĀ  Google ScholarĀ 

  139. Zeng Y, Zhang K, Wang X, Sui Y, Zou B, Zheng W, Zou G (2011) Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages. Sens Actuators B Chem 159(1):245ā€“250. https://doi.org/10.1016/j.snb.2011.06.080

    ArticleĀ  CASĀ  Google ScholarĀ 

  140. Xu J, Wang X, Shen J (2006) Hydrothermal synthesis of In2O3 for detecting H2S in air. Sens Actuators B Chem 115(2):642ā€“646. https://doi.org/10.1016/j.snb.2005.10.038

    ArticleĀ  CASĀ  Google ScholarĀ 

  141. Zhang C, Debliquy M, Boudiba A, Liao H, Coddet C (2010) Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection. Sens Actuators B Chem 144(1):280ā€“288. https://doi.org/10.1016/j.snb.2009.11.006

    ArticleĀ  CASĀ  Google ScholarĀ 

  142. Heidari EK, Zamani C, Marzbanrad E, Raissi B, Nazarpour S (2010) WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition. Sens Actuators B Chem 146(1):165ā€“170. https://doi.org/10.1016/j.snb.2010.01.073

    ArticleĀ  CASĀ  Google ScholarĀ 

  143. Liu Z, Miyauchi M, Yamazaki T, Shen Y (2009) Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sens Actuators B Chem 140(2):514ā€“519. https://doi.org/10.1016/j.snb.2009.04.059

    ArticleĀ  CASĀ  Google ScholarĀ 

  144. You L, Sun YF, Ma J, Guan Y, Sun JM, Du Y, Lu GY (2011) Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sens Actuators B Chem 157(2):401ā€“407. https://doi.org/10.1016/j.snb.2011.04.071

    ArticleĀ  CASĀ  Google ScholarĀ 

  145. Kida T, Nishiyama A, Yuasa M, Shimanoe K, Yamazoe N (2009) Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sens Actuators B Chem 135(2):568ā€“574. https://doi.org/10.1016/j.snb.2008.09.056

    ArticleĀ  CASĀ  Google ScholarĀ 

  146. Min Y, Tuller HL, Palzer S, Wƶllenstein J, Bƶttner H (2003) Gas response of reactively sputtered ZnO films on Si-based micro-array. Sens Actuators B Chem 93(1ā€“3):435ā€“441. https://doi.org/10.1016/S0925-4005(03)00170-9

    ArticleĀ  CASĀ  Google ScholarĀ 

  147. Cho P, Kim K, Lee J (2006) NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J Electroceram 17(2ā€“4):975ā€“978. https://doi.org/10.1007/s10832-006-8146-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  148. Na CW, Woo H, Kim I, Lee J (2011) Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun 47(18):5148ā€“5150. https://doi.org/10.1039/c0cc05256f

    ArticleĀ  CASĀ  Google ScholarĀ 

  149. Breedon M, Spizzirri P, Taylor M, du Plessis J, McCulloch D, Zhu J, Yu L, Hu Z, Rix C, Wlodarski W, Kalantar-zadeh K (2010) Synthesis of nanostructured tungsten oxide thin films: a simple, controllable, inexpensive, aqueous solā€“gel method. Cryst Growth Des 10(1):430ā€“439. https://doi.org/10.1021/cg9010295

    ArticleĀ  CASĀ  Google ScholarĀ 

  150. Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G (2016) Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens Actuators B Chem 225:544ā€“552. https://doi.org/10.1016/j.snb.2015.11.065

    ArticleĀ  CASĀ  Google ScholarĀ 

  151. ƖztĆ¼rk S, KılınƧ N, ƖztĆ¼rk ZZ (2013) Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position. J Alloy Compd 581:196ā€“201. https://doi.org/10.1016/j.jallcom.2013.07.063

    ArticleĀ  CASĀ  Google ScholarĀ 

  152. Moon J, Park J, Lee S, Zyung T, Kim I (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuators B Chem 149(1):301ā€“305. https://doi.org/10.1016/j.snb.2010.06.033

    ArticleĀ  CASĀ  Google ScholarĀ 

  153. Basu PK, Jana SK, Saha H, Basu S (2008) Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sens Actuators B Chem 135(1):81ā€“88. https://doi.org/10.1016/j.snb.2008.07.021

    ArticleĀ  CASĀ  Google ScholarĀ 

  154. Bhattacharyya P, Basu PK, Lang C, Saha H, Basu S (2008) Noble metal catalytic contacts to solā€“gel nanocrystalline zinc oxide thin films for sensing methane. Sens Actuators B Chem 129(2):551ā€“557. https://doi.org/10.1016/j.snb.2007.09.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  155. Kim JC, Jun HK, Huh J, Lee DD (1997) Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens Actuators B 45(3):271ā€“277. https://doi.org/10.1016/S0925-4005(97)00325-0

    ArticleĀ  CASĀ  Google ScholarĀ 

  156. Prasad AK, Amirthapandian S, Dhara S, Dash S, Murali N, Tyagi AK (2014) Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature. Sens Actuators B Chem 191:252ā€“256. https://doi.org/10.1016/j.snb.2013.09.102

    ArticleĀ  CASĀ  Google ScholarĀ 

  157. Dayan NJ, Sainkar SR, Karekar RN, Aiyer RC (1998) Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin Solid Films 325(1):254ā€“258. https://doi.org/10.1016/S0040-6090(98)00501-X

    ArticleĀ  CASĀ  Google ScholarĀ 

  158. Quaranta F, Rella R, Siciliano P, Capone S, Epifani M, Vasanelli L, Licciulli A, Zocco A (1999) A novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature. Sens Actuators B 58:350ā€“355

    ArticleĀ  CASĀ  Google ScholarĀ 

  159. Wang Z, Li Z, Sun J, Zhang H, Wang W, Zheng W, Wang C (2010) Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. J Phys Chem C 114(13):6100ā€“6105. https://doi.org/10.1021/jp9100202

    ArticleĀ  CASĀ  Google ScholarĀ 

  160. Liu L, Guo C, Li S, Wang L, Dong Q, Li W (2010) Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens Actuators B Chem 150(2):806ā€“810. https://doi.org/10.1016/j.snb.2010.07.022

    ArticleĀ  CASĀ  Google ScholarĀ 

  161. Wang Z, Li Z, Jiang T, Xu X, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl Mater Inter 5(6):2013ā€“2021. https://doi.org/10.1021/am3028553

    ArticleĀ  CASĀ  Google ScholarĀ 

  162. Das SN, Kar JP, Choi J, Lee TI, Moon K, Myoung J (2010) Fabrication and characterization of ZnO single nanowire-based hydrogen sensor. J Phys Chem C 114(3):1689ā€“1693. https://doi.org/10.1021/jp910515b

    ArticleĀ  CASĀ  Google ScholarĀ 

  163. Alsaif MMYA, Balendhran S, Field MR, Latham K, Wlodarski W, Ou JZ, Kalantar-zadeh K (2014) Two dimensional Ī±-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing. Sens Actuators B Chem 192:196ā€“204. https://doi.org/10.1016/j.snb.2013.10.107

    ArticleĀ  CASĀ  Google ScholarĀ 

  164. Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuators B Chem 93(1ā€“3):338ā€“344. https://doi.org/10.1016/S0925-4005(03)00222-3

    ArticleĀ  CASĀ  Google ScholarĀ 

  165. Liu B, Cai D, Liu Y, Li H, Weng C, Zeng G, Li Q, Wang T (2013) High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. Nanoscale 5(6):2505. https://doi.org/10.1039/c3nr33872j

    ArticleĀ  CASĀ  Google ScholarĀ 

  166. Patil LA, Bari AR, Shinde MD, Deo V (2010) Ultrasonically prepared nanocrystalline ZnO thin films for highly sensitive LPG sensing. Sens Actuators B Chem 149(1):79ā€“86. https://doi.org/10.1016/j.snb.2010.06.027

    ArticleĀ  CASĀ  Google ScholarĀ 

  167. Shinde VR, Gujar TP, Lokhande CD (2007) LPG sensing properties of ZnO films prepared by spray pyrolysis method: effect of molarity of precursor solution. Sens Actuators B Chem 120(2):551ā€“559. https://doi.org/10.1016/j.snb.2006.03.007

    ArticleĀ  CASĀ  Google ScholarĀ 

  168. Waghulade R, Patil P, Pasricha R (2007) Synthesis and LPG sensing properties of nano-sized cadmium oxide. Talanta 72(2):594ā€“599. https://doi.org/10.1016/j.talanta.2006.11.024

    ArticleĀ  CASĀ  Google ScholarĀ 

  169. Sen T, Shimpi NG, Mishra S, Sharma R (2014) Polyaniline/Ī³-Fe2O3 nanocomposite for room temperature LPG sensing. Sens Actuators B Chem 190:120ā€“126. https://doi.org/10.1016/j.snb.2013.07.091

    ArticleĀ  CASĀ  Google ScholarĀ 

  170. Singh S, Singh A, Yadav BC, Dwivedi PK (2013) Fabrication of nanobeads structured perovskite type neodymium iron oxide film: its structural, optical, electrical and LPG sensing investigations. Sens Actuators B Chem 177:730ā€“739. https://doi.org/10.1016/j.snb.2012.11.096

    ArticleĀ  CASĀ  Google ScholarĀ 

  171. Mishra D, Srivastava A, Srivastava A, Shukla RK (2008) Bead structured nanocrystalline ZnO thin films: synthesis and LPG sensing properties. Appl Surf Sci 255(5):2947ā€“2950. https://doi.org/10.1016/j.apsusc.2008.08.078

    ArticleĀ  CASĀ  Google ScholarĀ 

  172. Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139(30):10365ā€“10373. https://doi.org/10.1021/jacs.7b04221

    ArticleĀ  CASĀ  Google ScholarĀ 

  173. Zhang R, Wang L, Deng J, Zhou T, Lou Z, Zhang T (2015) Hierarchical structure with heterogeneous phase as high performance sensing materials for trimethylamine gas detecting. Sens Actuators B Chem 220:1224ā€“1231. https://doi.org/10.1016/j.snb.2015.07.036

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, Y. (2019). Applications of Semiconducting Metal Oxides Gas Sensors. In: Semiconducting Metal Oxides for Gas Sensing. Springer, Singapore. https://doi.org/10.1007/978-981-13-5853-1_9

Download citation

Publish with us

Policies and ethics