Skip to main content

Types and Configurations of Nocturnal Cooling Systems

  • Chapter
  • First Online:
Book cover Nocturnal Cooling Technology for Building Applications

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 342 Accesses

Abstract

There are various designs available for the nocturnal cooling applications in buildings. These designs can be categorised into active and passive cooling systems. Active cooling systems require circulation of working fluids such as water or air. Meanwhile, passive cooling systems do not require the circulation of working fluids. A lot of efforts also have been made in integrating the active or passive nocturnal cooling systems with various low carbon technologies. Although numerous studies can be found in the open literature pertaining to various designs and configurations of the nocturnal cooling systems, commercial development of these systems is still limited. Future studies should also be looked into the economic analysis of these systems which includes the equipment and material, installation, operating cost and potential energy savings incurred from the usage of the system as compared to the conventional mechanical cooling system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.N. Nwaigwe, C.A. Okoronkwo, N.V. Ogueke, E.E. Anyanwu, Review of nocturnal cooling systems. Int. J. Energy Clean Environ. 11, 117–143 (2010). https://doi.org/10.1615/interjenercleanenv.2011003225

    Article  Google Scholar 

  2. X. Lu, P. Xu, H. Wang, T. Yang, J. Hou, Cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art. Renew. Sustain. Energy Rev. 65, 1079–1097 (2016). https://doi.org/10.1016/j.rser.2016.07.058

    Article  Google Scholar 

  3. H. Hay, J. Yellot, Natural cooling with roof pond and moveable insulation. ASHRAE Trans. 75, 165–177 (1969)

    Google Scholar 

  4. B. Givoni, Solar heating and night radiation cooling by a roof radiation trap. Energy Build. 1(2), 141–145 (1977)

    Article  Google Scholar 

  5. D. Michell, K.L. Biggs, Radiation cooling of buildings at night. Appl. Energy 5(79), 263–275 (1979)

    Article  Google Scholar 

  6. B.A. Kimball, Cooling performance and efficiency of night sky radiators. Sol. Energy 34(1), 19–33 (1985)

    Article  Google Scholar 

  7. Y. Etzion, E. Erell, Thermal storage mass in radiative cooling systems. Build. Environ. 26(4), 389–394 (1991)

    Article  Google Scholar 

  8. A. Argiriou, M. Santamouris, D.N. Assimakopoulos, Assessment of the radiative cooling potential of a collector using hourly weather data. Energy 19(8), 879–888 (1994)

    Article  Google Scholar 

  9. G. Mihalakakou, A. Ferrante, J.O. Lewis, The cooling potential of a metallic nocturnal radiator. Energy Build. 28, 251–256 (1998)

    Article  Google Scholar 

  10. J. Khedari, J. Waewsak, S. Thepa, J. Hirunlabh, Field investigation of night radiation cooling under tropical climate. Renew. Energy 20(2), 183–193 (2009)

    Article  Google Scholar 

  11. D.S. Parker, J.R. Sherwin, Evaluation of the Nightcool Nocturnal Radiation Cooling Concept: Annual Performance Assessment in Scale Test Buildings Stage Gate 1B (2008)

    Google Scholar 

  12. T. Prommajak, J. Phonruksa, S. Pramuang, Passive cooling of air at night by the nocturnal radiation in Loei, Thailand. Int. J. Renew. Energy 3, 33–40 (2008)

    Google Scholar 

  13. H.S. Bagiorgas, G. Mihalakakou, Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renew. Energy 33, 1220–1227 (2008). https://doi.org/10.1016/j.renene.2007.04.015

    Article  Google Scholar 

  14. M. Falt, M. Zevenhoven, Radiative cooling in Northern Europe using a skylight. J. Energy Power Eng., 692–702 (2011)

    Google Scholar 

  15. J. Hollick, Nocturnal radiation cooling tests. Energy Procedia 30, 930–936 (2012). https://doi.org/10.1016/j.egypro.2012.11.105

    Article  Google Scholar 

  16. M. Hanif, T.M.I. Mahlia, A. Zare, T.J. Saksahdan, H.S.C. Metselaar, Potential energy savings by radiative cooling system for a building in tropical climate. Renew. Sustain. Energy Rev. 32(5), 642–650 (2014)

    Article  Google Scholar 

  17. M.K. Kim, H. Leibundgut, Advanced airbox cooling and dehumidification system connected with a chilled ceiling panel in series adapted to hot and humid climates. Energy Build. 85, 72–78 (2014)

    Article  Google Scholar 

  18. C.I. Ezekwe, Nocturnal radiation measurements in Nigeria. Sol. Energy 37(1), 1–6 (1986)

    Article  Google Scholar 

  19. S. Ito, N. Miura, Studies of radiative cooling systems for storing thermal energy. J. Sol. Energy Eng. 111, 251–256 (1989). https://doi.org/10.1115/1.3268315

    Article  Google Scholar 

  20. C.I. Ezekwe, Performance of a heat pipe assisted night sky radiative cooler. Energy Convers. Manag. 30, 403–408 (1990). https://doi.org/10.1016/0196-8904(90)90041-V

    Article  Google Scholar 

  21. A.H.H. Ali, I.M.S. Taha, I.M. Ismail, Cooling of water flowing through a night sky radiator. Sol. Energy 55, 235–253 (1995). https://doi.org/10.1016/0038-092X(95)00030-U

    Article  Google Scholar 

  22. R.C. Bourne, C. Carew, Design and implementation of a night roof-spray storage cooling system, in Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings (Washington, DC, USA, 1996)

    Google Scholar 

  23. M.A. Al-Nimr, Z. Kodah, B. Nassar, A theoretical and experimental investigation of a radiative cooling system. Sol. Energy 63(6), 367–373 (1998)

    Article  Google Scholar 

  24. E. Erell, Y. Etzion, Analysis and experimental verification of an improved cooling radiator. Renew. Energy 16, 700–703 (1999)

    Article  Google Scholar 

  25. E. Erell, Y. Etzion, Radiative cooling of buildings with flat-plate solar collectors. Build. Environ. 35, 297–305 (2000). https://doi.org/10.1016/S0360-1323(99)00019-0

    Article  Google Scholar 

  26. D.R. Satterlund, An improved equation for estimating long-wave radiation from the atmosphere. Water Resour. Res. 15, 1649 (1979). https://doi.org/10.1029/WR015i006p01649

    Article  Google Scholar 

  27. M.G. Meir, J.B. Rekstad, O.M. Løvvik, A study of a polymer-based radiative cooling system. Sol. Energy 73, 403–417 (2002). https://doi.org/10.1016/S0038-092X(03)

    Article  Google Scholar 

  28. K.D. Dobson, G. Hodes, Y. Mastai, Thin semiconductor films for radiative cooling applications. Sol. Energy Mater. Sol. Cells 80, 283–296 (2003). https://doi.org/10.1016/j.solmat.2003.06.007

    Article  Google Scholar 

  29. A. Dimoudi, A. Androutsopoulos, The cooling performance of a radiator based roof component. Sol. Energy 80, S1039–S1047 (2006)

    Article  Google Scholar 

  30. A.H.H. Ali, Passive cooling of water at night in uninsulated open tank in hot arid areas. Energy Convers. Manag. 48(1), 93–100 (2007)

    Article  Google Scholar 

  31. P. Vangtook, S. Chirarattananon, Application of radiant cooling as a passive cooling option in hot humid climate. Build. Environ. 42(2), 543–556 (2007)

    Article  Google Scholar 

  32. N.V. Ogueke, C.C. Onwuachu, E.E. Anyanwu, Experimental study of long-wave night sky radiation in Owerri, Nigeria for passive cooling application, in Low Energy Architecture. World Renewable Energy Congress (2011), pp. 2110–2017. http://www.ep.liu.se/ecp/057/vol8/048/ecp57vol8_048.pdf

  33. E. Hosseinzadeh, H. Taherian, An experimental and analytical study of a radiative cooling system with unglazed flat plate collectors. Int. J. Green Energy 9(8), 766–779 (2012)

    Article  Google Scholar 

  34. T.N. Anderson, M. Duke, J.K. Carson, Performance of an unglazed solar collector for radiant cooling, in Proceedings of Australian Solar Cooling 2013 Conference, Sydney (2013)

    Google Scholar 

  35. C.A. Okoronkwo, K.N. Nwigwe, N.V. Ogueke, E.E. Anyanwu, An experimental investigation of the passive cooling of a building using night time radiant cooling. Int. J. Green Energy 11(10), 1072–1083 (2014)

    Article  Google Scholar 

  36. J. Sima, O. Sikula, K. Kosutova, J. Plasek, Theoretical evaluation of night sky cooling in the Czech Republic. Energy Procedia 48, 645–653 (2014). https://doi.org/10.1016/j.egypro.2014.02.075

    Article  Google Scholar 

  37. G. Heidarinejad, M.F. Farahani, S. Delfani, Investigation of a hybrid system of nocturnal radiative cooling and direct evaporative cooling. Build. Environ. 45, 1521–1528 (2010)

    Article  Google Scholar 

  38. M.F. Farahani, G. Heidarinejad, S. Delfani, A two-stage system of nocturnal radiative and indirect evaporative cooling for conditions in Tehran. Energy Build. 42, 2131–2138 (2010). https://doi.org/10.1016/j.enbuild.2010.07.003

    Article  Google Scholar 

  39. U. Eicker, A. Dalibard, Photovoltaic–thermal collectors for night radiative cooling of buildings. Sol. Energy 85, 1322–1335 (2011). https://doi.org/10.1016/j.solener.2011.03.015

    Article  Google Scholar 

  40. Y. Man, H. Yang, J.D. Spitler, Z. Fang, Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings. Appl. Energy 88(11), 4160–4171 (2011)

    Article  Google Scholar 

  41. S. Zhang, J. Niu, Cooling performance of nocturnal radiative cooling combined with microencapsulated phase change material (MPCM) slurry storage. Energy Build. 54, 122–130 (2012). https://doi.org/10.1016/j.enbuild.2012.07.041

    Article  Google Scholar 

  42. A.H.H. Ali, Desiccant enhanced nocturnal radiative cooling-solar collector system for air comfort application in hot arid areas. Sustain. Energy Technol. Asses. 1, 54–62 (2013)

    Google Scholar 

  43. M.I. Sohel, Z. Ma, P. Cooper, J. Adams, L. Niccol, A feasibility study of night radiative cooling of BIPVT in climatic conditions of major Australian cities, in Proceedings of Asia-Pacific Solar Research Conference (2014)

    Google Scholar 

  44. W. Lin, Z. Ma, M.I. Sohel, P. Cooper, Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials. Energy Convers. Manag. 88, 218–230 (2014)

    Article  Google Scholar 

  45. A.Y.T. Al-Zubaydi, W.J. Dartnall, Design and modelling of water chilling production system by the combined effects of evaporation and night sky radiation. J. Renew. Energy, 1–8 (2014). http://dx.doi.org/10.1155/2014/624502

  46. O. Sikula, P. Vojkůvková, J. Šíma, J. Plášek, G. Gebauer, Hybrid roof panels for night cooling and solar energy utilization in buildings. Energy Procedia 74, 177–183 (2015)

    Article  Google Scholar 

  47. Y. Cui, Y. Wang, L. Zhu, Performance analysis on a building-integrated solar heating and cooling panel. Renew. Energy 74, 627–632 (2015)

    Article  Google Scholar 

  48. M. Fiorentini, P. Cooper, Z. Ma, Development and optimization of an innovative HVAC system with integrated PVT and PCM thermal storage for a net-zero energy retrofitted house. Energy Build. 94, 21–32 (2015)

    Article  Google Scholar 

  49. Yi Man, Hongxing Yang, Qu Yunxia, Zhaohong Fang, A novel nocturnal cooling radiator used for supplemental heat sink of active cooling system. Procedia Eng. 121, 300–308 (2015)

    Article  Google Scholar 

  50. Y. Cui, Y. Wang, Q. Huang, S. Wei, Effect of radiation and convection heat transfer on cooling performance of radiative panel. Renew. Energy 99, 10–17 (2016)

    Article  Google Scholar 

  51. M. Hu, G. Pei, Q. Wang, J. Li, Y. Wang, J. Ji, Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Appl. Energy 179, 899–908 (2016). https://doi.org/10.1016/j.apenergy.2016.07.066

    Article  Google Scholar 

  52. B. Zhao, M. Hu, X. Ao, G. Pei, Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Appl. Energy 205, 626–634 (2017)

    Article  Google Scholar 

  53. S. Cui, M.K. Moon, K. Papadikis, Performance evaluation of hybrid radiant cooling system integrated with decentralized ventilation system in hot and humid climates. Procedia Eng. 205, 1245–1252 (2017)

    Article  Google Scholar 

  54. M. Hu, B. Zhao, J. Li, Y. Wang, G. Pei, Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system. Energy 137, 419–430 (2017)

    Article  Google Scholar 

  55. D. Aviv, F. Meggers, Cooling oculus for desert climate—dynamic structure for evaporative downdraft and night sky cooling. Energy Procedia 122, 1123–1128 (2017)

    Article  Google Scholar 

  56. B. Zhao, M. Hu, X. Ao, Q. Xuan, G. Pei, Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling. Sol. Energy Mater. Sol. Cells 178, 266–272 (2018). https://doi.org/10.1016/j.solmat.2018.01.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardiana Idayu Ahmad .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, M.I., Jarimi, H., Riffat, S. (2019). Types and Configurations of Nocturnal Cooling Systems. In: Nocturnal Cooling Technology for Building Applications . SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-5835-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5835-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5834-0

  • Online ISBN: 978-981-13-5835-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics