Skip to main content

Theory and Mechanism of Nocturnal Cooling

  • Chapter
  • First Online:
Nocturnal Cooling Technology for Building Applications

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 401 Accesses

Abstract

Nocturnal cooling is governed by the fundamental physics of radiative cooling, heat transfer mechanism and steady-state energy balance equations. It is also important to understand the basics of atmospheric physics in applying the cooling principles of radiative cooling for building applications. In the perspective of materials, various studies have been proposed and investigated in order to develop nocturnal cooling radiator. Amongst the materials are paints, polymer-based films, natural materials and modified materials. Although studies have shown that in general, most of these materials have high emissivity property that can deliver a significant radiation effect within the atmospheric window; some of them are not. Further studies should be established in the development of materials that can improve the performance of nocturnal cooling by considering their influence on the performance of the radiator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.K. Garg, Non-newtonian flow over a wedge with suction. Int. J. Numer. Methods Fluids 15, 37–49 (1992). https://doi.org/10.1002/fld.1650150104

    Article  MATH  Google Scholar 

  2. D. Brunt, Notes on radiation in the atmosphere. Meteorol. Soc. 58, 389–420 (2007). https://doi.org/10.1002/qj.49705824704

    Article  Google Scholar 

  3. W.C. Swinbank, Long-wave radiation from clear skies. Meteorol. Soc. 89, 339–348 (1963). https://doi.org/10.1002/qj.49708938105

    Article  Google Scholar 

  4. A. Whillier, Design factors influencing collector performance, low temperature engineering application of solar energy (1967)

    Google Scholar 

  5. F.P. Incropera, F.P. Incropera, Fundamentals of Heat and Mass Transfer (Wiley, 2007)

    Google Scholar 

  6. X. Sun, Y. Sun, Z. Zhou, M.A. Alam, P. Bermel, Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics 6, 997–1015 (2017). https://doi.org/10.1515/nanoph-2017-0020

    Article  Google Scholar 

  7. S. Vall, A. Castell, Radiative cooling as low-grade energy source: a literature review. Renew. Sustain. Energy Rev. 77, 803–820 (2017). https://doi.org/10.1016/j.rser.2017.04.010

    Article  Google Scholar 

  8. J.J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, F. Marquier, Generalized Kirchhoff law (2016)

    Google Scholar 

  9. X. Lu, P. Xu, H. Wang, T. Yang, J. Hou, Cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art. Renew. Sustain. Energy Rev. 65, 1079–1097 (2016). https://doi.org/10.1016/j.rser.2016.07.058

    Article  Google Scholar 

  10. A.R. Gentle, G.B. Smith, Optimized infra-red spectral response of surfaces for sub-ambient sky cooling as a function of humidity and operating temperature, in R.B. Wehrspohn, A. Gombert, ed. (2010), p. 77250Z. https://doi.org/10.1117/12.853218

  11. M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. Adv. Sci. 3, 1500360 (2016). https://doi.org/10.1002/advs.201500360

    Article  Google Scholar 

  12. A. Golaka, R.H.B. Exell, An investigation into the use of a wind shield to reduce the convective heat flux to a nocturnal radiative cooling surface. Renew. Energy 32, 593–608 (2007). https://doi.org/10.1016/j.renene.2006.03.007

    Article  Google Scholar 

  13. A. Gentle, G. Smith, Performance comparisons of sky window spectral selective and high emittance radiant cooling systems under varying atmospheric conditions (2010)

    Google Scholar 

  14. B.B. Naghshine, A. Saboonchi, Optimized thin film coatings for passive radiative cooling applications. Opt. Commun. 410, 416–423 (2018). https://doi.org/10.1016/j.optcom.2017.10.047

    Article  Google Scholar 

  15. R. Family, M.P. Mengüç, Materials for radiative cooling: a review. Procedia Environ. Sci. 38, 752–759 (2017). https://doi.org/10.1016/j.proenv.2017.03.158

    Article  Google Scholar 

  16. B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, G. Troise, Nocturnal and diurnal performances of selective radiators. Appl. Energy 3, 267–286 (1977). https://doi.org/10.1016/0306-2619(77)90015-0

    Article  Google Scholar 

  17. M.G. Meir, J.B. Rekstad, O.M. Løvvik, A study of a polymer-based radiative cooling system. Sol. Energy 73, 403–417 (2002). https://doi.org/10.1016/S0038-092X(03)

    Article  Google Scholar 

  18. M. Zeyghami, D.Y. Goswami, E. Stefanakos, A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 178, 115–128 (2018). https://doi.org/10.1016/j.solmat.2018.01.015

    Article  Google Scholar 

  19. S. Wijewardane, D.Y. Goswami, A review on surface control of thermal radiation by paints and coatings for new energy applications. J. Renew. Sustain. Energy Rev 16(4), 1863–1873 (2012)

    Article  Google Scholar 

  20. C.G. Granqvist, A. Hjortsberg, T.S. Eriksson, Radiative cooling with selectively infrared-emitting solid film. J. Appl. Phys. 90, 187–190 (1982). https://doi.org/10.1063/1.331487

    Article  Google Scholar 

  21. A. Addeo, E. Monza, M. Peraldo, B. Bartoli, B. Coluzzi, V. Silvestrini, et al., Selective covers for natural cooling devices. Nuovo Cim. C, 1419–1429 (1978). https://doi.org/10.1007/bf02507668

  22. T.S. Eriksson, E.M. Lushiku, C.G. Granqvist, Materials for radiative cooling to low temperature. Sol. Energy Mater 11, 149–161 (1984). https://doi.org/10.1016/0165-1633(84)90067-4

    Article  Google Scholar 

  23. A.R. Gentle, K.L. Dybdal, G.B. Smith, Polymeric mesh for durable infra-red transparent convection shields: applications in cool roofs and sky cooling. Sol. Energy Mater. Sol. Cells 115, 79–85 (2013). https://doi.org/10.1016/j.solmat.2013.03.001

    Article  Google Scholar 

  24. A.H.H. Ali, H. Saito, I.M.S. Taha, K. Kishinami, I.M. Ismail, Effect of aging, thickness and color on both the radiative properties of polyethylene films and performance of the nocturnal cooling unit. Energy Convers. Manag. 39, 87–93 (1998). https://doi.org/10.1016/S0196-8904(96)00174-4

    Article  Google Scholar 

  25. M. Hu, G. Pei, Q. Wang, J. Li, Y. Wang, J. Ji, Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Appl. Energy 179, 899–908 (2016). https://doi.org/10.1016/j.apenergy.2016.07.066

    Article  Google Scholar 

  26. A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo et al., The challenge of high-performance selective emitters for thermophotovoltaic applications. Semicond. Sci. Technol. 18, S174–S183 (2003). https://doi.org/10.1088/0268-1242/18/5/306

    Article  Google Scholar 

  27. A.W. Harrison, M.R. Walton, Radiative cooling of TiO2 white paint. Sol. Energy 20(2), 185–188 (1978)

    Article  Google Scholar 

  28. C.G. Granqvist, Radiative heating and cooling with spectrally selective surfaces. Appl. Opt. 20, 2606–2615 (1981)

    Article  Google Scholar 

  29. C.G. Granqvist, A. Hjortsberg, Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J. Appl. Phys. 52, 4205–4220 (1981). https://doi.org/10.1063/1.329270

    Article  Google Scholar 

  30. P. Berdahl, M. Martin, F. Sakkal, Thermal performance of radiative cooling panels. Int. J. Heat Mass Transf. 26, 871–880 (1983). https://doi.org/10.1016/S0017-9310(83)80111-2

    Article  MATH  Google Scholar 

  31. B. Orel, M.K. Gunde, A. Krainer, Radiative cooling efficiency of white pigmented paints. Sol. Energy 50, 477–482 (1993)

    Article  Google Scholar 

  32. P. Berdahl, Radiative cooling with MgO and/or LiF layers. Appl. Opt. 23, 370 (1984). https://doi.org/10.1364/AO.23.000370

    Article  Google Scholar 

  33. E.M. Lushiku, C.G. Granqvist, Radiative cooling with selectively infrared-emitting gases. Appl. Opt. 23, 1835–1843 (1984). https://doi.org/10.1364/ao.23.001835

    Article  Google Scholar 

  34. B.A. Kimball, S.B. Idso, J.K. Aase, A model of thermal radiation from partly cloudy and overcast skies. Water Resour. Res. 18, 931 (1982). https://doi.org/10.1029/wr018i004p00931

    Article  Google Scholar 

  35. J. Rincon, N. Almao, E. González, Experimental and numerical evaluation of a solar passive cooling system under hot and humid climatic conditions. Sol. Energy 71(1), 71–80 (2001)

    Article  Google Scholar 

  36. D.R. Satterlund, An improved equation for estimating long-wave radiation from the atmosphere. Water Resour. Res. 15, 1649 (1979). https://doi.org/10.1029/wr015i006p01649

    Article  Google Scholar 

  37. A.Y.T. Al-Zubaydi, W.J. Dartnall, A. Dowd, Design, construction and calibration of an instrument for measuring the production of chilled water by the combined effects of evaporation and night sky radiation, in Proceedings of the International Mechanical Engineering Conference and Exposition (IMECE 2012) (Houston, TX, USA, 2012)

    Google Scholar 

  38. A.Y.T. Al-Zubaydi, W.J. Dartnall, Design and modelling of water chilling production system by the combined effects of evaporation and night sky radiation. J. Renew. Energy, 1–8 (2014). http://dx.doi.org/10.1155/2014/624502

  39. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. J. Nat. (2014). https://doi.org/10.1038/nature13883

  40. M. Benlattar, E.M. Oualim, M. Harmouchi, A. Mouhsen, A. Belafhal, Radiative properties of cadmium telluride thin film as radiative cooling materials. Opt. Commun. 256, 10–15 (2005). https://doi.org/10.1016/j.optcom.2005.06.033

    Article  Google Scholar 

  41. E.M. Lushiku, T.S. Eriksson, A. Hjortsberg, C.G. Granqvist, Radiative cooling to low temperatures with selectively infrared-emitting gases. Sol. Wind Technol. 1, 115–121 (1984). https://doi.org/10.1016/0741-983X(84)90013-4

    Article  Google Scholar 

  42. E.M. Lushiku, C.G. Granqvist, Radiative cooling with selectively infrared-emitting ammonia gase. J. Appl. Phys. 53, 5526–5530 (1982). https://doi.org/10.1364/AO.23.001835

    Article  Google Scholar 

  43. E.D.M.V. Voorthuysen, R. Roes, Blue sky cooling for parabolic trough plants. Energy Procedia 49, 71–79 (2013). https://doi.org/10.1016/j.egypro.2014.03.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardiana Idayu Ahmad .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, M.I., Jarimi, H., Riffat, S. (2019). Theory and Mechanism of Nocturnal Cooling. In: Nocturnal Cooling Technology for Building Applications . SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-5835-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5835-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5834-0

  • Online ISBN: 978-981-13-5835-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics