Skip to main content

A Brief Review on Soil Salinity Mapping by Optical and Radar Remote Sensing

  • Chapter
  • First Online:
Research Developments in Saline Agriculture

Abstract

This paper summarized the recent progress in soil salinity detection, prediction, quantification, and mapping by remote sensing technology. The following aspects such as classification-based mapping technique, biophysical indicators and spectral indices application, potential of radar data, and machine learning regression were all reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN:

Artificial neural networks

ARVI:

Atmospherically resistant vegetation index

CNN:

Convolutional neural networks

DEM:

Digital elevation model

EVI:

Enhanced vegetation index

GDVI:

Generalized difference vegetation index

IBL :

Instance-based learning

LST :

Land surface temperature

ML :

Maximum likelihood

MLR :

Multivariate linear regression

NDVI :

Normalized difference vegetation index

NDII :

Normalized difference infrared index

NIR :

Near infrared

OSAVI:

Optimized soil-adjusted vegetation index

PCA :

Principal components analysis

PLSR :

Partial least square regression

R :

Red

RF :

Random forests

RFR :

Random forest regression

SAR :

Synthetic-aperture radar

SARVI :

Soil-adjusted and atmospherically resistant vegetation index

SAVI :

Soil-adjusted vegetation index

SI :

Salinity index

SVM :

Support vector machines

SVR :

Support vector regression

SWIR :

Shortwave infrared

VNIR :

Visible and near infrared

References

  • Al-Khaier F (2003) Soil salinity detection using satellite remote sensing (MS Thesis), ITC (International Institute for Geo-information Science and Earth Observation), The Netherlands

    Google Scholar 

  • Allbed A, Kumar L (2013) Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Adv Remote Sens 2:373–385

    Article  Google Scholar 

  • Aly Z, Bonn FJ, Magagi R (2004) Modelling the backscattering coefficient of salt-affected soils: application to Wadi El-Natrun bottom, Egypt. EARSeL eProceedings 3, 3/2004, pp 372–381

    Google Scholar 

  • Attema EPW, Ulaby FT (1978) Vegetation modeled as a water cloud. Radio Sci J 13:357–364

    Article  Google Scholar 

  • Bannari A, El-Battay A, Bannari R, Rhinane H (2018) Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape. Remote Sens 10:855. https://doi.org/10.3390/rs10060855

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Brunner P, Li HT, Kinzelbach W, Li WP (2007) Generating soil electrical conductivity maps at regional level by integrating measurements on the ground and remote sensing data. Int J Remote Sens 28:3341–3361

    Article  Google Scholar 

  • Buringh P (1960) Soils and soil conditions in Iraq. Ministry of Agriculture of Iraq (337 pp)

    Google Scholar 

  • Cai S, Zhang R, Liu L, Zhou D (2010) A method of salt-affected soil information extraction based on a support vector machine with texture features. Math Comput Model 51:1319–1325. https://doi.org/10.1016/j.mcm.2009.10.037

    Article  Google Scholar 

  • Ciresan D, Meier U, Masci J, Gambardella LM, Schmidhuber J (2011) Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the twenty-second international joint conference on Artificial Intelligence, vol 2, pp 1237–1242

    Google Scholar 

  • Dabrowska-Zielinska K, Inoue Y, Kowalik W, Gruszczynska M (2007) Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis. Adv Space Res 39:139–148

    Article  Google Scholar 

  • Dale PER, Hulsman K, Chandica AL (1986) Classification of reflectance on colour infrared aerial photographs and sub-tropical salt-marsh vegetation types. Int J Remote Sens 7(12):1783–1788. https://doi.org/10.1080/01431168608948968

    Article  Google Scholar 

  • Dechter R (1986) Learning while searching in constraint-satisfaction-problems. AAAI-86 proceedings, pp 178–183. University of California

    Google Scholar 

  • Douaoui AEK, Nicolas H, Walter C (2006) Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 134:217–230

    Article  Google Scholar 

  • Dwivedi RS, Rao BRM (1992) The selection of the best possible Landsat TM band combination for delineating salt-affected soils. Int J Remote Sens 13:2051–2058. https://doi.org/10.1080/01431169208904252

    Article  Google Scholar 

  • Eklund PW, Kirkby SD, Salim A (1998) Data mining and soil salinity analysis. Int J Geogr Inf Sci 12(3):247–268

    Article  Google Scholar 

  • Eldeiry AA, Garcia LA (2010) Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using Landsat images. J Irrig Drain Eng 136:355–364

    Article  Google Scholar 

  • Elhag M (2016) Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia. J Sens, 2016, Article ID: 7596175, 8 pages. https://doi.org/10.1155/2016/7596175

    Article  Google Scholar 

  • Farifteh J, Farshad A, George RJ (2006) Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3–4):191–206

    Article  CAS  Google Scholar 

  • Farifteh J, van der Meer F, Atzberger C, Carranza E (2007) Quantitative analysis of salt affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Environ 110:59–78

    Article  Google Scholar 

  • Fernández-Buces N, Siebe C, Cram S, Palacio JL (2006) Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico. J Arid Environ 65:644–667

    Article  Google Scholar 

  • Furby S, Caccetta P, Wallace J (2010) Salinity monitoring in Western Australia using remotely sensed and other spatial data. J Environ Qual 39:16–25

    Article  CAS  Google Scholar 

  • Garcia L, Eldeiry A, Elhaddad A (2005) Estimating soil salinity using remote sensing data. In: Proceedings of the 2005 central plains irrigation conference, pp 1–10. Available at: http://www.ksre.ksu.edu/irrigate/OOW/P05/Garcia.pdf. Accessed Jan 2013

  • Ghabour TK, Daels L (1993) Mapping and monitoring of soil salinity of ISSN. Egypt J Soil Sci 33(4):355–370

    Google Scholar 

  • Gong H, Shao Y, Brisco B, Hu Q, Tian W (2013) Modeling the dielectric behavior of saline soil at microwave frequencies. Canadian J Remote Sens 39(1):1–10

    Article  Google Scholar 

  • Goossens R, van Ranst E (1998) The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt). Geoderma 87:47–56

    Article  Google Scholar 

  • Gorji T, Tanik A, Sertel E (2015) Soil salinity prediction, monitoring and mapping using modern technologies. Procedia Earth Planet Sci 15:507–512

    Article  Google Scholar 

  • Hardisky MA, Klemas V, Smart RM (1983) The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies. Photogramm Eng Remote Sens 49:77–83

    Google Scholar 

  • Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Huete AR, Liu HQ, Batchily K, van Leeuwen W (1997) A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens Environ 59: 440–451

    Google Scholar 

  • Huete AR, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Iqbal F (2011) Detection of salt affected soil in rice–wheat area using satellite image. Afr J Agric Res 6:4973–4982

    Google Scholar 

  • Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A (2017) Satellite thermography for soil salinity assessment of cropped areas in Uzbekistan. Land Degrad Dev 28:870–877. https://doi.org/10.1002/ldr.2670

    Article  Google Scholar 

  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92:475–482

    Article  Google Scholar 

  • Kaufman YJ, Tanré D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens 30:261–270

    Article  Google Scholar 

  • Khan NM, Rastoskuev VV, Shalina E, Sato Y (2001) Mapping salt-affected soil using remote sensing indicators. A simple approach with the use of GIS Idrissi. In: Proceedings of the 22nd Asian conference on remote sensing, 5–9 November 2001, Singapore. Available at: www.crisp.nus.edu.sg/~acrs2001/pdf/206khan.PDF. Accessed 04 Sept 2018

  • Khan NM, Rastoskuev VV, Sato Y, Shiozawa S (2005) Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric Water Manag 77(1–3):96–109. https://doi.org/10.1016/j.agwat.2004.09.038

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst 1:1097–1105

    Google Scholar 

  • Kumar K, Hari Prasad KS, Arora MK (2012) Estimation of water cloud model vegetation parameters using a genetic algorithm. Hydrol Sci J 57(4):776–789

    Article  Google Scholar 

  • Lasne Y, Paillou P, Ruffle G, Serradilla C, Demontoux F, Freeman A, Farr T, McDonald K, Chapman B, Malezieux J-M (2008) Effect of salinity on the dielectric properties of geological materials: implication for soil moisture detection by means of remote sensing. IEEE Trans Geosci Remote Sens 46:3689–3693

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Lesch SM, Corwin DL, Ulmer MG, Anderson KA, Potts DJ, Doolittle JA, Matos MR, Baltes MJ (2010) Regional-scale assessment of soil salinity in the red river valley using multi-year MODIS EVI and NDVI. J Environ Qual 39:35–41

    Article  CAS  Google Scholar 

  • Major DJ, Baret F, Guyot G (1990) A ratio vegetation index adjusted for soil brightness. Int J Remote Sens 11(5):727–740

    Article  Google Scholar 

  • Mas JF, Flores JJ (2008) The application of artificial neural networks to the analysis of remotely sensed data. Int J Remote Sens 29(3):617–663. https://doi.org/10.1080/01431160701352154

    Article  Google Scholar 

  • Matusugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw 16(5):555–559. https://doi.org/10.1016/S0893-6080(03)00115-1

    Article  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Mokarram M, Hojati M, Roshan G, Negahban S (2015) Modeling the behavior of Vegetation Indices in the salt dome of Korsia in North-East of Darab, Fars, Iran. Model Earth Syst Environ 1:27. https://doi.org/10.1007/s40808-015-0029-y

    Article  Google Scholar 

  • Mougenot B, Pouget M, Epema G (1993) Remote sensing of salt-affected soils. Remote Sens Rev 7:241–259

    Article  Google Scholar 

  • Paliwal A, Laborte A, Nelson A, Singh RK (2018) Salinity stress detection in rice crops using time series MODIS VI data. Int J Remote Sens. https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1513667

  • Qadir M, Qureshi AS, Cheraghi SAM (2008) Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad Dev 19(2):214–227. https://doi.org/10.1002/ldr.818

    Article  Google Scholar 

  • Qadir M, Noble AD, Qureshi AS, Gupta RK, Yuldashev T, Karimov A (2009) Salt-induced land and water degradation in the Aral Sea basin: a challenge to sustainable agriculture in Central Asia. Nat Res Forum 33(2):134–149. https://doi.org/10.1111/j.1477-8947.2009.01217.x

    Article  Google Scholar 

  • Rahmati M, Hamzehpour N (2017) Quantitative remote sensing of soil electrical conductivity using ETM+ and ground measured data. Int J Remote Sens 38(1):123–140. https://doi.org/10.1080/01431161.2016.1259681

    Article  Google Scholar 

  • Rao B, Sankar T, Dwivedi R, Thammappa S, Venkataratnam L, Sharma R, Das S (1995) Spectral behaviour of salt-affected soils. Int J Remote Sens 16:2125–2136

    Article  Google Scholar 

  • Rodríguez PG, González MEP, Zaballos AG (2007) Mapping of salt-affected soils using TM images. Int J Remote Sens 28:2713–2722

    Article  Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation index. Remote Sens Environ 55:95–107

    Article  Google Scholar 

  • Shao Y, Hu Q, Guo H, Lu Y, Dong Q, Han C (2003) Effect of dielectric properties of moist salinized soils on backscattering coefficients extracted from RADARSAT image. IEEE Trans Geosci Remote Sens 41:1879–1888

    Article  Google Scholar 

  • Singh AN, Dwivedi RS (1989) Delineation of salt-affected soils through digital analysis of Landsat MSS data. Int J Remote Sens 10(1):83–92. https://doi.org/10.1080/01431168908903849

    Article  Google Scholar 

  • Singh RP, Srivastav SK (1990) Mapping of waterlogged and salt affected soils using microwave radiometers. Int J Remote Sens 11:1879–1887

    Article  Google Scholar 

  • Singh R, Kumar V, Srivastav S (1990) Use of microwave remote sensing in salinity estimation. Int J Remote Sens 11:321–330

    Article  Google Scholar 

  • Sreenivas K, Venkataratnam L, Rao PVN (1995) Dielectric properties of salt affected soils. Int J Remote Sens 16:641–649

    Article  Google Scholar 

  • Steven MD, Malthus TJ, Jaggard FM, Andrieu B (1992) Monitoring responses of vegetation to stress. In: Cracknell AP, Vaughan RA (eds), Remote sensing from research to operation: proceedings of the 18th annual conference of the remote sensing society. UK

    Google Scholar 

  • Taghizadeh-Mehrjardi R, Minasny B, Sarmadian F, Malone BP (2014) Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 213:15–28. https://doi.org/10.1016/j.geoderma.2013.07.020

    Article  CAS  Google Scholar 

  • Taylor GR, Mah AH, Kruse FA, Kierein-Young KS, Hewson RD, Bennett BA (1996) Characterization of saline soils using airborne radar imagery. Remote Sens Environ 57:127–142

    Article  Google Scholar 

  • Vapnik V, Lerner A (1963) Pattern recognition using generalized portrait method. Autom Remote Control 24:774–780

    Google Scholar 

  • Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems, vol 9. MIT Press, Cambridge, pp 281–287

    Google Scholar 

  • Verma KS, Saxena RK, Barthwal AK, Deshmukh SN (1994) Remote sensing technique for mapping salt affected soils. Int J Remote Sens 15(9):1901–1914. https://doi.org/10.1080/01431169408954215

    Article  Google Scholar 

  • Wilkinson GG (2005) Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Trans Geosci Remote Sens 43:433–440. https://doi.org/10.1109/TGRS.2004.837325

    Article  Google Scholar 

  • Wu W (2014) The generalized difference vegetation index (GDVI) for dryland characterization. Remote Sens 6:1211–1233

    Article  Google Scholar 

  • Wu W, Zhang W (2003) Present land use and cover patterns and their development potential in North Ningxia, China. J Geogr Sci 13(1):54–62

    Article  Google Scholar 

  • Wu W, Al-Shafie WM, Mhaimeed AS, Ziadat F, Nangia V, Payne W (2014a) Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq. IEEE J Sel Topics Appl Earth Obs Remote Sens 7(11):4442–4452. https://doi.org/10.1109/JSTARS.2014.2360411

    Article  Google Scholar 

  • Wu W, Mhaimeed AS, Al-Shafie WM, Ziadat F, Nangia V, De Pauw E (2014b) Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Reg 2-3:21–31. https://doi.org/10.1016/j.geodrs.2014.09.002

    Article  Google Scholar 

  • Wu W, Zucca C, Karam F, Liu G (2016) Enhancing the performance of regional land cover mapping. Int J Earth Obs Geoinf 52:422–432. https://doi.org/10.1016/j.jag.2016.07.014

    Article  CAS  Google Scholar 

  • Wu W, Zucca C, Muhaimeed AS, Al-Shafie WM, Fadhil Al-Quraishi AM, Nangia V, Zhu M, Liu G (2018) Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia. Land Degrad Dev 29(11): 4005–4014 (published online on Sept 05, 2018). https://doi.org/10.1002/ldr.3148

    Article  Google Scholar 

  • Wu W, Muhaimeed AS, Al-Shafie WM, Fadhil AM (2019) Using radar and optical data for soil salinity modeling and mapping in Central Iraq. In: Fadhil AM, Negm A (eds) Environmental remote sensing in Iraq. Springer, Berlin. (in press)

    Google Scholar 

  • Zhang T, Zeng S, Gao Y, Ouyang Z, Li B, Fang C, Zhao B (2011) Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol Indic 11:1552–1562

    Article  Google Scholar 

  • Zhang T, Qi J, Gao Y, Ouyang Z, Zeng S, Zhao B (2015) Detecting soil salinity with MODIS time series VI data. Ecol Indic 52:480–489. https://doi.org/10.1016/j.ecolind.2015.01.004

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to thank East China University of Technology for their financial support (Grant No: DHTP2018001, 2018-2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weicheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, W. (2019). A Brief Review on Soil Salinity Mapping by Optical and Radar Remote Sensing. In: Dagar, J., Yadav, R., Sharma, P. (eds) Research Developments in Saline Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-5832-6_2

Download citation

Publish with us

Policies and ethics