Skip to main content

Carbon Dynamics in Salt-affected Soils

  • Chapter
  • First Online:
Research Developments in Saline Agriculture

Abstract

Salinity and sodicity are major constraints for crop production in arid and semiarid regions of the world. Soil fertility and atmospheric carbon dioxide (CO2) concentrations are strongly affected by soil organic carbon (SOC) turnover. Salt affects soil C pools and CO2 emission by (i) plant growth as well as C input reduction and (ii) reducing microbial activity and thus C turnover due to osmotic stress in saline soils or poor soil structure in sodic soils. Due to lesser plant growth, and C input, SOC content is low in salt-affected soils. This review has identified many technologies (including phytoremediation, changes in land use, organic amendments, irrigation and tillage) that have been practised to increase SOC stocks in salt-affected soils. Many models for SOC sequestration used by various agencies do not take into account the effect of salt and therefore, provide incorrect data on SOC dynamics in salt-affected soils of India and world. With the predicted increase in area affected by salinity, it is important to develop the management practices and technologies which will not only reclaim salt-affected soils but also increase carbon content to restore the fertility of these soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdou F, El-Kobbia T, Sorensen L (1975) Decomposition of native organic matter and 14C-labelled barley straw in different Egyptian soils. Beitr Trop Landwirtsch Veterinärmed 13:203–209

    CAS  Google Scholar 

  • Bajwa MS, Swarup A (2002) Soil salinity and alkalinity. In: Goswami NN, Rattan RK, Dev G, Narayanasamy G, Das DK, Sanyal SK, Pal DK, Rao DLN (eds) Fundamentals of soil science. Indian Society of Soil Science, New Delhi, pp 329–347

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    CAS  Google Scholar 

  • Ben-dor E, Banin A (1995) Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59:364–372

    CAS  Google Scholar 

  • Ben-dor E, Irons JR, Epema GF (1999) Soil reflectance. In: Rencz AN (ed) Manual of remote sensing, remote sensing for the earth sciences, vol 3. John Wiley and Sons, New York, pp 111–188

    Google Scholar 

  • Ben-Gal A, Borochov-Neori H, Yermiyahu U, Shani U (2009) Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environ Exp Bot 65:232–237

    CAS  Google Scholar 

  • Bowers SA, Hanks RJ (1965) Reflection of radiant energy from soils. Soil Sci 100:130–138

    Google Scholar 

  • Brady NC, Weil RR (2007) The nature and properties of soils, 14th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brown DJ, Bricklemyer RS, Miller PR (2005) Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana. Geoderma 129:251–267

    CAS  Google Scholar 

  • Central Soil Salinity Research Institute (CSSRI) (2015) Vision 2050. CSSRI, Karnal

    Google Scholar 

  • Chadwick OA, Kelly EF, Merritts DM, Amundson RG (1994) Carbon-dioxide consumption during soil development. Biogeochemistry 24:115–127

    CAS  Google Scholar 

  • Chowdhury N, Marschner P, Burns RG (2011) Soil microbial activity and community composition: Impact of changes in matric and osmotic potential. Soil Biol Biochem 43:1229–1236

    CAS  Google Scholar 

  • Clark RN (1999) Spectroscopy of rocks & minerals, & principles of spectroscopy. In: Rencz AN (ed) Manual of remote sensing, remote sensing for the earth sciences, vol 3. John Wiley and Sons, New York, pp 3–58

    Google Scholar 

  • Coleman K, Jenkinson D (1996) RothC-26.3-A Model for the turnover of carbon in soil. In: Powlson D, Smith P, Smith J (eds) Evaluation of soil organic matter models using existing long-term datasets, NATO ASI series, vol 38. Springer-Verlag, Berlin, pp 237–246

    Google Scholar 

  • Cozzolino D, Moron A (2006) Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions. Soil Tillage Res 85:78–85

    Google Scholar 

  • Dalal RC (1989) Long-term effects of no-tillage, crop residue, and nitrogen application on properties of a Vertisol. Soil Scie Soc Am J 53:1511–1515

    CAS  Google Scholar 

  • Dalal RC, Henry RJ (1986) Simultaneous determination of moisture, organic carbon, & total nitrogen by near infrared reflectance spectrophotometry. Soil Sci Soc Am J 50:120–123

    CAS  Google Scholar 

  • Datta A, Mandal B (2018) Production (via N-fertilization) and correction (by liming) of acidity in soils contribute a huge efflux of CO2 to atmosphere: real or arbitrary? Glob Chang Bio 24:3280–3281

    Google Scholar 

  • Datta A, Basak N, Chaudhari SK, Sharma DK (2015) Soil properties and organic carbon distribution under different land uses in reclaimed sodic soils of North-West India. Geoderma Reg 4:134–146

    Google Scholar 

  • Datta A Basak N, Chinchmalatpure AR, Banyal R (2017) Effect of land uses on properties of salt affected soils. Annual report, ICAR-CSSRI

    Google Scholar 

  • Dendooven L, Alcántara-Hernández RJ, Valenzuela-Encinas C, Luna-Guido M, Perez-Guevara F, Marsch R (2010) Dynamics of carbon and nitrogen in an extreme alkaline saline soil: A review. Soil Biol Biochem 42:865–877

    CAS  Google Scholar 

  • Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility: a review. Agron Sustain Dev 30:401–422

    CAS  Google Scholar 

  • Diacono M, Montemurro F (2015) Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture 5:221–230

    Google Scholar 

  • Emmerich WE (2003) Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agric For Meteorol 116:91–102

    Google Scholar 

  • England JR, Rossel RAV (2018) Proximal sensing for soil carbon accounting. SOIL 4:101–122

    Google Scholar 

  • Entry JA, Sojka RE, Shewmaker GE (2004) Irrigation increases inorganic carbon in agricultural soils. Environ Manage 33:S309–S317

    Google Scholar 

  • Eshel G, Fine P, Singer MJ (2007) Total soil carbon and water quality: an implication for carbon sequestration. Soil Sci Soc Am J 71:397–405

    CAS  Google Scholar 

  • Eswaran H, Van den Berg E, Reich PF, Kimble JM (1995) Global soil C resources. In: Lal R, Kimble JM, Levine E, Stewart BA (eds) Soils and global change. CRC/Lewis Publishers, Boca Raton, pp 27–44

    Google Scholar 

  • Eswaran H, Reich PF, Kimble JM, Beinroth FH, Padmanabhan E, Moncharoen P (2000) Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. Lewis Publishers, Boca Raton, pp 15–25

    Google Scholar 

  • FAO (2005) The importance of soil organic matter. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fine AK, van Es HM, Schindelbeck RR (2017) Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci Soc Am J 81:589–513

    CAS  Google Scholar 

  • Fornara DA, Steinbeiss S, McNamara NP, Gleixner G, Oakley S, Poulton PR, Macdonald AJ, Bardgett RD (2011) Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Glob Change Biol 17:1925–1934

    Google Scholar 

  • Franko U, Crocker G, Grace P, Klir J, Körschens M, Poulton P, Richter D (1997) Simulating trends in soil organic carbon in long-term experiments using the CANDY model. Geoderma 81:109–120

    Google Scholar 

  • Ganjegunte G, Ulery A, Niu G, Wu Y (2018) Organic carbon, nutrient, and salt dynamics in saline soil and switchgrass (Panicum virgatum L.) irrigated with treated municipal wastewater. Land Degrad Dev 29:80–90

    Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178:255–263

    CAS  Google Scholar 

  • Garg VK (1998) Interaction of tree crops with a sodic soil environment: potential for rehabilitation of degraded environments. Land Degrad Dev 9:81–93

    CAS  Google Scholar 

  • Ghollarata M, Raiesi F (2007) The adverse effects of soil salinization on the growth of Trifolium alexandrinum L. and associated microbial and biochemical properties in a soil from Iran. Soil Biol Biochem 39:1699–1702

    CAS  Google Scholar 

  • Gros R, Poly F, Jocteur Monrozier L, Faivre P (2003) Plant and soil microbial community responses to solid waste leachates diffusion on grassland. Plant Soil 255:445–455

    CAS  Google Scholar 

  • Guo L, Falloon P, Coleman K, Zhou B, Li Y, Lin E, Zhang F (2007) Application of the RothC model to the results of long term experiments on typical upland soils in northern China. Soil Use Manag 23:63–70

    CAS  Google Scholar 

  • Gupta RK, Abrol IP (1990) Salt-affected soils: their reclamation and management for crop production. Adv Soil Sci 11:223–228

    Google Scholar 

  • Hummel JW, Sudduth KA, Hollinger SE (2001) Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Comput Electron Agric 32(2):149–165

    Google Scholar 

  • Hunt GR (1982) Spectroscopic properties of rocks and minerals. In: Carmichael RS (ed) Handbook of physical properties of rocks. CRC Press, Florida, pp 295–385

    Google Scholar 

  • Ingleby HR, Crowe TG (2000) Reflectance models for predicting organic carbon in Saskatchewan soils. Can Agric Eng 42:57–63

    Google Scholar 

  • Izaurralde R, McGill W, Jans-Hammermeister D, Haugen-Korzyra K, Hiley J (1996) Development of a technique to calculate carbon fluxes in agricultural soils at the ecodistrict level using simulation models and various aggregation methods. Interim Report, Submitted to the Scientific Authority of the Agriculture and Agri-Food Canada Greenhouse Gas Initiative, University of Alberta, Edmonton

    Google Scholar 

  • Izaurralde RC, Rice CW, Wielopolski L, Ebinger MH, Reeves JB III et al (2013) Evaluation of three field-based methods for quantifying soil carbon. PLoS One 8(1):e55560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson D (1990) The turnover of organic carbon and nitrogen in soil. Philos Trans Biol Sci 329:361–368

    CAS  Google Scholar 

  • Jenkinson D, Hart P, Rayner J, Parry L (1987) Modelling the turnover of organic matter in long-term experiments at Rothamsted. Intecol Bull 15:1–8

    Google Scholar 

  • Jensen L, Mueller T, Nielsen N, Hansen S, Crocker G, Grace P, Klir J, Körschens M, Poulton P (1997) Simulating trends in soil organic carbon in long-term experiments using the soil-plant-atmosphere model DAISY1. Geoderma 81:5–28

    Google Scholar 

  • Ji W, ViscarraRossel RA, Shi Z (2015) Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations. Eur J Soil Sci 66:555–565

    Google Scholar 

  • Kamoni P, Gicheru P, Wokabi S, Easter M, Milne E, Coleman K, Falloon P, Paustian K, Killian K, Kihanda F (2007) Evaluation of two soil carbon models using two Kenyan long term experimental datasets. Agric, Ecosyst Environ 122:95–104

    CAS  Google Scholar 

  • Kaonga M, Coleman K (2008) Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26. 3 model. For Ecol Manag 256:1160–1166

    Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002) Bioamelioration of a sodic soil by silvopastoral systems in northwestern India. Agrofor Syst 54:13–20

    Google Scholar 

  • Kessler TJ, Harvey CF (2001) The global flux of carbon dioxide into groundwater. Geophys Res Lett 28:279–282

    CAS  Google Scholar 

  • Khokhlova OS, Arlashina EA, Kovalevskaya IS (1997) The effect of irrigation on the carbonate status of Chernozems of Central Precaucasus (Russia). Soil Technol 11:171–184

    Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Knowles TA, Singh B (2003) Carbon storage in cotton soils of northern New South Wales. Aust J Soil Res 41:889–903

    CAS  Google Scholar 

  • Knox NMS, Grunwald S, McDowell ML, Bruland GJ, Myers DB, Harris WG (2015) Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma 239–240:229–239

    CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163(4):421–431

    CAS  Google Scholar 

  • Lal R (2001) Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim Change 51:35–72

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    CAS  PubMed  Google Scholar 

  • Lal R, Kimble JM (2000) Pedogenic carbonates and the global carbon cycle. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. Lewis Publishers, Boca Raton, pp 1–14

    Google Scholar 

  • Lal R, Follett RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172:943–956

    CAS  Google Scholar 

  • Laura RD (1974) Effects of neutral salts on carbon and nitrogen mineralization of organic matter in soil. Plant Soil 41:113–127

    CAS  Google Scholar 

  • Laura RD (1977) Salinity and nitrogen mineralization in soil. Soil Biol Biochem 9:333–336

    CAS  Google Scholar 

  • Lee KS, Lee DH, Sudduth KA, Chung SO, Kitchen NR, Drummond ST (2009) Wavelength identification and diffuse reflectance estimation for surface and profile soil properties. Trans ASABE 52(3):683–695

    CAS  Google Scholar 

  • Li C, Frolking S, Crocker G, Grace P, Klír J, Körchens M, Poulton P (1997) Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma 81:45–60

    Google Scholar 

  • Liang Y, Nikolic M, Peng Y, Chen W, Jiang Y (2005) Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol Biochem 37:1185–1195

    CAS  Google Scholar 

  • Mancer H, Bouhoun MD (2018) Effect of irrigation water salinity on the organic carbon mineralization in soil (laboratory incubation). AIP Conf Proc 1968:020007. https://doi.org/10.1063/1.5039166

    Article  CAS  Google Scholar 

  • Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41:1355–1379

    CAS  Google Scholar 

  • McClung G, Frankenberger W (1987) Nitrogen mineralization rates in saline vs. salt-amended soils. Plant Soil 104:13–21

    CAS  Google Scholar 

  • McCormick RW, Wolf DC (1980) Effect of sodium chloride on CO2 evolution, ammonification, and nitrification in a Sassafras sandy loam. Soil Biol Biochem 12:153–157

    CAS  Google Scholar 

  • Meena MD, Joshi PK, Jat HS, Chinchmalatpure AR, Narjary B, Sheoran P, Sharm DK (2016) Changes in biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard–pearl millet cropping system. Catena 140:1–8

    CAS  Google Scholar 

  • Minasny B, McBratney AB, Bellon-Maurel V, Roger J-M, Gobrecht A, Ferrand L, Joalland S (2011) Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 167(68):118–124

    Google Scholar 

  • Morgan CLS, Waiser TH, Brown DJ, Hallmark CT (2009) Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma 151(3–4):249–256

    CAS  Google Scholar 

  • Morra MJ, Hall MH, Freeborn LL (1991) Carbon & nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci Soc Am J 55:288–291

    CAS  Google Scholar 

  • Mouazen AM, Maleki MR, Baerdemaeker JDE, Ramon H (2007) On-line measurement of some selected soil properties using a VIS-NIR sensor. Soil Tillage Res 93:13–27

    Google Scholar 

  • Nakamura S, Hayashi K, Omae H, Ramadjita T, Dougbedji F, Shinjo H, Saidou AK, Tobita S (2010) Validation of soil organic carbon dynamics model in the semi-arid tropics in Niger, West Africa. Nutr Cycl Agroecosyst. https://doi.org/10.1007/s10705-010-9402-4

    Google Scholar 

  • Nelson PN, Ladd JN, Oades JM (1996) Decomposition of 14C-labelled plant material in a salt-affected soil. Soil Biol Biochem 28:433–441

    CAS  Google Scholar 

  • Oldfield EE, Wood SA, Bradford MA (2018) Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant Soil 423:363–373

    CAS  Google Scholar 

  • Oo AN, Iwai CB, Saenjan P (2013) Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev 26:300–310

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pankhurst C, Yu S, Hawke B, Harch B (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Fertil Soils 33:204–217

    CAS  Google Scholar 

  • Paradelo R, Virto I, Chenu C (2015) Net effect of liming on soil organic carbon stocks: a review. Agricult, Ecosyst Environ 202:98–107

    CAS  Google Scholar 

  • Parras-Alcántara L, Díaz-Jaimes L, Lozano-García B (2013) Organic farming affects c and n in soils under olive groves in Mediterranean areas. Land Degrad Dev. https://doi.org/10.1002/ldr.2231

    Google Scholar 

  • Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5:109–131

    CAS  Google Scholar 

  • Pathak H, Rao DLN (1998) Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem 30:695–702

    CAS  Google Scholar 

  • Paustian K (1994) Modelling soil biology and biochemical processes for sustainable agriculture research. In: Paustian K, Pankhurst C, Doube B, Gupta V, Grace P (eds) Soil biota: management in sustainable farming systems. CSIRO Publications, East Melbourne, pp 182–193

    Google Scholar 

  • Qadir M, Oster JD (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19

    CAS  PubMed  Google Scholar 

  • Qadir M, Schubert S, Ghafoor A, Murtaza G (2001) Amelioration strategies for sodic soils: a review. Land Degrad Dev 12:357–386

    Google Scholar 

  • Qadir M, Oster JD, Schudert S, Noble AD, Sahrawat KL (2007) Phytoremediation of Sodic and Saline-Sodic Soils. Adv Agron 96:197–247

    CAS  Google Scholar 

  • Rasul G, Appuhn A, Müller T, Joergensen RG (2006) Salinity-induced changes in the microbial use of sugarcane filter cake added to soil. Appl Soil Ecol 31:1–10

    Google Scholar 

  • Raymond PA, Oh NH, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451:449–452

    CAS  PubMed  Google Scholar 

  • Rietz D, Haynes R (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    CAS  Google Scholar 

  • Robertson GP, Gross KL, Hamilton SK et al (2014) Farming for ecosystem services: an ecological approach to production agriculture. Bioscience 64:404–415

    Google Scholar 

  • Sadiq M, Hassan G, Mehdi SM, Hussain N, Jamil M (2007) Amelioration of saline-sodic soils with tillage implements and sulfuric acid application. Pedosphere 17:182–190

    CAS  Google Scholar 

  • Saha D, Kukal SS, Bawa SS (2014) Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded shiwaliks hills of lower Himalayas. Land Degrad Dev 25:407–416

    Google Scholar 

  • Sanderman J (2012) Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric, Ecosyst Environ 155:70–77

    CAS  Google Scholar 

  • Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244

    Google Scholar 

  • Sarig S, Steinberger Y (1994) Microbial biomass response to seasonal fluctuation in soil salinity under the canopy of desert halophytes. Soil Biol Biochem 26:1405–1408

    Google Scholar 

  • Setia R, Marschner P (2012) Carbon mineralization in saline soils as affected by residue composition and water potential. Biol Fertil Soils 49:71–77

    Google Scholar 

  • Setia R, Marschner P (2013) Impact of total water potential and varying contribution of matric and osmotic potential on carbon utilization in saline soils. Eur J Soil Biol 56:95–100

    CAS  Google Scholar 

  • Setia R, Marschner P, Baldock J, Chittleborough D (2010) Is CO2 evolution in saline soils affected by an osmotic effect and calcium carbonate? Biol Fertil Soils 46:781–792

    CAS  Google Scholar 

  • Setia R, Setia D, Marschner P (2011a) Short-term carbon mineralization in saline-sodic soils. Biol Fertil Soils 48:475–479

    Google Scholar 

  • Setia R, Marschner P, Baldock J, Chittleborough D, Smith P, Smith J (2011b) Salinity effects on carbon mineralization in soils of varying texture. Soil Biol Biochem 43:1908–1916

    CAS  Google Scholar 

  • Setia R, Smith P, Marschner P, Baldock J, Chittleborough D, Smith J (2011c) Introducing a decomposition rate modifier in the Rothamsted carbon model to predict soil organic carbon stocks in saline soils. Environ Sci Technol 45:6396–6403

    CAS  PubMed  Google Scholar 

  • Setia R, Marschner P, Baldock J, Chittleborough D, Verma V (2011d) Relationships between carbon dioxide emission and soil properties in salt affected landscapes. Soil Biol Biochem 43:667–674

    CAS  Google Scholar 

  • Setia R, Smith P, Marschner P, Gottschalk P, Baldock J, Verma V, Setia D, Smith J (2012) Simulation of salinity effects on soil organic carbon: past, present and future carbon stocks. Environ Sci Technol 46:1624–1631

    CAS  PubMed  Google Scholar 

  • Setia R, Gottschalk P, Smith P, Marschner P, Baldock J, Setia D, Smith J (2013) Soil salinity decreased global soil organic carbon stocks. Sci Tot Environ 465:267–272

    CAS  Google Scholar 

  • Setia R, Rengasamy P, Marschner P (2014) Effect of mono- and divalent cations on sorption of water-extractable organic carbon and microbial activity. Biol Fertil Soils 50:727–734

    Google Scholar 

  • Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66:988–998

    CAS  Google Scholar 

  • Singh GB, Gill HS (1990) Raising trees in alkali soils. Wasteland News 6:15–18

    Google Scholar 

  • Singh K, Mishra AK, Singh B, Singh RP, Patra DD (2016) Tillage effects on crop yield and physicochemical properties of sodic soils. Land Degrad Dev 27:223–230

    Google Scholar 

  • Six J, Conant RT, Pau EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    CAS  Google Scholar 

  • Skene T, Oades JM (1995) The effects of sodium adsorption ratio and electrolyte concentration on water quality: laboratory studies. Soil Sci 159:65

    CAS  Google Scholar 

  • Smith P, Smith J, Powlson D, McGill W, Arah J, Chertov O, Coleman K, Franko U, Frolking S, Jenkinson D (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225

    Google Scholar 

  • Srivastava R, Prasad J, Saxena RK (2004) Spectral reflectance properties of some shrink-swell soils of Central India as influenced by soil properties. Agropedology 14:45–54

    Google Scholar 

  • Srivastava R, Sarkar D, Mukhopadhayay SS, Sood A, Singh M, Nasre RA, Dhale SA (2015) Development of hyperspectral model for rapid monitoring of soil organic carbon under precision farming in the Indo-Gangetic Plains of Punjab, India. J Indian Soc Remote Sens 43 (4):751–759

    Google Scholar 

  • Srivastava R, Sethi M, Yadav RK, Bundela DS, Singh M, Chattaraj S, Singh SK, Nasre RA, Bishnoi SR, Dhale S, Mohekar DS, Barthwal AK (2017) Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the Indo-Gangetic Plains of Haryana, India. J Indian Soc Remote Sens 45(2):307–315

    Google Scholar 

  • Strudley MW, Green TR, Ascough IIJC (2008) Tillage effects on soil hydraulic properties in space and time: state of the science. Soil Tillage Res 99:4–48

    Google Scholar 

  • Suarez DL (2000) Impact of agriculture on CO2 as affected by changes in inorganic carbon. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. Lewis Publishers, Boca Raton, pp 257–272

    Google Scholar 

  • Summers D, Lewis M, Ostendorf B, Chittleborough D (2011) Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecol Indic 11:123–131

    CAS  Google Scholar 

  • Sverdrup H, Warfvinge P (1988) Weathering of primary silicate minerals in the natural soil environment in relation to a chemical-weathering model. Water Air Soil Pollut 38:387–408

    CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    CAS  Google Scholar 

  • Tripathi S, Kumari S, Chakraborty A, Gupta A, Chakrabarti K, Bandyapadhyay BK (2006) Microbial biomass and its activities in salt-affected coastal soils. Biol Fertil Soils 42:273–277

    Google Scholar 

  • Vasques GM, Grunwald S, Sickman JO (2008) Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 146:14–25

    CAS  Google Scholar 

  • ViscarraRossel RA, Walvoort DJJ, Mcbratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75

    CAS  Google Scholar 

  • Walpola BC, Arunakumara KKIU (2010) Effect of salt stress on decomposition of organic matter and nitrogen mineralization in animal manure amended soils. J Agric Sci 5:9–18

    Google Scholar 

  • Wang L, Sun X, Li S, Zhang T, Zhang W, Zhai P (2014) Application of organic amendments to a coastal saline soil in North China: effects on soil physical and chemical properties and tree growth. PLoS One 9:e89185. https://doi.org/10.1371/journal.pone.0089185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108:145–154

    CAS  Google Scholar 

  • White AF (1995) Chemical weathering rates of silicate minerals in soils. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. The Geochemical Society, St Louis, pp 407–461

    Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    CAS  Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2008) Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fertil Soils 44:943–953

    Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2009) Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Appl Soil Ecol 41:29–40

    Google Scholar 

  • Wong VNL, Greene SB, Dalal RC, Murphy BW (2010) Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manag 26:2–11

    Google Scholar 

  • Wu LS, Wood Y, Jiang PP, Li LQ, Pan GX, Lu JH, Chang AC, Enloe HA (2008) Carbon sequestration and dynamics of two irrigated agricultural soils in California. Soil Sci Soc Am J 72:808–814

    CAS  Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35:319–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, A., Setia, R., Barman, A., Guo, Y., Basak, N. (2019). Carbon Dynamics in Salt-affected Soils. In: Dagar, J., Yadav, R., Sharma, P. (eds) Research Developments in Saline Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-5832-6_12

Download citation

Publish with us

Policies and ethics