Skip to main content

MedCop: Verifiable Computation for Mobile Healthcare System

  • Conference paper
  • First Online:
Security in Computing and Communications (SSCC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 969))

Included in the following conference series:

  • 1452 Accesses

Abstract

Cloud-assisted mobile healthcare system collects and processes patients data and then stores them as personal health record (PHR). Verifiable monitoring program finds useful results by analysing PHR in cloud-assisted healthcare system. Service provider can delegate a monitoring program to the cloud storage server for providing cost effective and faster service. The cloud performs computation over PHR and sends result back to user. The correctness of the computation of the result must be accurate for critical diseases; otherwise, patient’s treatment can go with wrong diagnosis. At the same time, the monitoring program should be hidden from all entities involved in the computation except the service provider. This is a challenging research problem to provide efficient and secure verification of computation of result while keeping the monitoring program hidden from the cloud as well as users. In this paper, we present a secure and efficient scheme for verification of computation of result while keeping monitoring program hidden from the cloud and users. The proposed scheme, named as MedCop, uses somewhat homomorphic encryption for PHR encryption and a private polynomial function is used for computation on encrypted data. We show that the MedCop scheme is secure under discrete logarithm assumption and the proof of computation is unforgeable. The implementation result of the MedCop scheme shows that the proposed scheme is efficient in comparison to related schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25

    Chapter  Google Scholar 

  2. Nia, A.M., Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A., Jha, N.K.: Energy-efficient long-term continuous personal health monitoring. IEEE Trans. Multi-Scale Comput. Syst. 1(2), 85–98 (2015)

    Article  Google Scholar 

  3. Mohan, P., Marin, D., Sultan, S., Deen, A.: MediNet: personalizing the self-care process for patients with diabetes and cardiovascular disease using mobile telephony. In: Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBS 2008), pp. 755–758 (2008)

    Google Scholar 

  4. Chiarini, G., Ray, P., Akter, S., Masella, C., Ganz, A.: mHealth technologies for chronic diseases and elders: a systematic review. IEEE J. Sel. Areas Commun. 31(9), 6–18 (2013)

    Article  Google Scholar 

  5. Klasnja, P., Pratt, W.: Healthcare in the pocket: mapping the space of mobile-phone health interventions. J. Biomed. Inf. 45(1), 184–198 (2012)

    Article  Google Scholar 

  6. Lin, H., Shao, J., Zhang, C., Fang, Y.: CAM: cloud-assisted privacy preserving mobile health monitoring. IEEE Trans. Inf. Forensics Secur. 8(6), 985–997 (2013)

    Article  Google Scholar 

  7. Liu, C.H., Wen, J., Yu, Q., Yang, B., Wang, W.: HealthKiosk: a family-based connected healthcare system for long-term monitoring. In: Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM 2011), pp. 241–246 (2011)

    Google Scholar 

  8. Apple Inc., HealthKit. https://developer.apple.com/documentation/healthkit

  9. Google, Inc., Google Fit - Fitness Tracking. https://play.google.com/store/apps/details

  10. Guo, L., Fang, Y., Li, M., Li, P.: Verifiable privacy-preserving monitoring for cloud-assisted mHealth systems. In: Proceedings of the IEEE Conference on Computer Communications (INFOCOM 2015), pp. 1026–1034 (2015)

    Google Scholar 

  11. Gajera, H., Naik, S., Das, M.L.: On the security of “verifiable privacy-preserving monitoring for cloud-assisted mhealth systems”. In: Ray, I., Gaur, M.S., Conti, M., Sanghi, D., Kamakoti, V. (eds.) ICISS 2016. LNCS, vol. 10063, pp. 324–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49806-5_17

    Chapter  Google Scholar 

  12. Micciancio, D.: A first glimpse of cryptography’s holy grail. Commun. ACM 53(3), 96 (2010)

    Article  Google Scholar 

  13. Pisa, P.S., Abdalla, M., Duarte, O.: Somewhat homomorphic encryption scheme for arithmetic operations on large integers. In: Proceedings of Global Information Infrastructure and Networking Symposium, pp. 1–8 (2012)

    Google Scholar 

  14. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  15. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor. 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  16. Sage, Sagemath, the Sage Mathematics Software System (Ver 7.6). https://www.sagemath.org

Download references

Acknowledgment

This research was supported in part by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-Indien Pour La Promotion De La Recherche Advancée (CEFIPRA) through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manik Lal Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gajera, H., Naik, S., Das, M.L. (2019). MedCop: Verifiable Computation for Mobile Healthcare System. In: Thampi, S., Madria, S., Wang, G., Rawat, D., Alcaraz Calero, J. (eds) Security in Computing and Communications. SSCC 2018. Communications in Computer and Information Science, vol 969. Springer, Singapore. https://doi.org/10.1007/978-981-13-5826-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5826-5_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5825-8

  • Online ISBN: 978-981-13-5826-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics