Skip to main content

Standing Waves in Tires

  • Chapter
  • First Online:
Advanced Tire Mechanics

Abstract

The phenomenon of standing waves in tires occurs in the sidewall and tire tread area when the vehicle speed exceeds a critical speed. Two approaches can be adopted in the study of standing waves: the analytical approach and FEA. The analytical approach, such as the adoption of a membrane model or elastic ring model, is further classified into the wave propagation approach and resonance approach. This chapter discusses the analytical approach and FEA for standing waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note 15.1.

  2. 2.

    Note 15.2.

  3. 3.

    See Footnote 2

References

  1. E.R. Gardner, T. Worswick, Behaviour of tyres at high speed. Trans. I.R.I. 27, 127–146 (1951)

    Google Scholar 

  2. H. Sakai, Tire Engineering (Guranpuri-Shuppan, 1987) (in Japanese)

    Google Scholar 

  3. D.M. Turner, Wave phenomina in tyres at high speed, in Proceedings of 3rd Rubber Technology, London (1954), pp. 735–748

    Google Scholar 

  4. W.F. Ames, Waves in tyres: part I: literature review on travelling waves. Tex. Res. J. 40, 498–503 (1970)

    Article  Google Scholar 

  5. F. Böhm, Zu Startik und Dynamik des Gurtelreifens. ATZ 69(8), 255–261 (1967)

    Google Scholar 

  6. T. Akasaka, Standing wave of running tire with high speed. Bull. Fac. Eng., Chuo Univ. B-5(11), 1–9 (1959)

    Google Scholar 

  7. H. Sakai, Radial vibrations of a pneumatic tyre at high speed. JSAE J. 19(7), 504–510 (1965). (in Japanese)

    Google Scholar 

  8. T. Akasaka, K. Yamagishi, On the standing waves in the shell wall of a running tyre. Trans. Jpn. Soc. Aero. Space Sci. 11(18), 12–20 (1968)

    Google Scholar 

  9. T. Akasaka, Y. Sakai, On the standing waves in radial tire. Fukugo Zairyo 1(1), 26–34 (1972)

    Google Scholar 

  10. T. Akasaka et al., Critical velocity due to standing wave in radial tire. Fukugo Zairyo 3(3), 8–11 (1974)

    Google Scholar 

  11. A. Chatterjee et al., On contact-induced standing waves in rotating tires: experiment and theory. J. Sound Vib. 227, 1049–1081 (1999)

    Article  Google Scholar 

  12. H. Pacejka, Analysis of tire properties, in Mechanics of Pneumatic Tires, ed. by S.K. Clark (U.S. Department of Transportation, 1981)

    Google Scholar 

  13. Y.D. Kwon, D.C. Prevorsek, Formation of standing waves in radial tires. Tire Sci. Technol. 12(1–4), 44–63 (1984)

    Article  Google Scholar 

  14. M. Endo et al., Flexural vibration of a thin rotating ring. J. Sound Vib. 92, 261–272 (1984)

    Article  Google Scholar 

  15. E. Vinesee, H. Nicollet, Surface waves on the rotating tyre: an application of functional analysis. J. Sound Vib. 126, 85–96 (1988)

    Article  Google Scholar 

  16. A.V. Metrikine, M.V. Tochilin, Steady-state vibrations of an elastic ring under moving load. J. Sound Vib. 232(3), 511–524 (2000)

    Google Scholar 

  17. V. Krylov, O. Gilbert, On the theory of standing waves in tyres at high vehicle speeds. J. Sound Vib. 329, 4398–4408 (2010)

    Google Scholar 

  18. W. Soedel, On the dynamic response of rolling tyres according to thin shell approximations. J. Sound Vib. 41, 233–246 (1975)

    Article  Google Scholar 

  19. J. Padovan, On viscoelasticity and standing waves in tires. Tire Sci. Technol. 4(4), 233–246 (1976)

    Article  Google Scholar 

  20. S.C. Huang, W. Soedel, Effects of Coriolis acceleration on the free and forced in-plane vibrations of rotating rings on elastic foundation. J. Sound Vib. 115, 253–274 (1987)

    Article  Google Scholar 

  21. J.R. Cho et al., Numerical investigation of tire standing wave using 3-D patterned tire model. J. Sound Vib. 305, 795–807 (2007)

    Article  Google Scholar 

  22. J. Padovan, On standing waves in tires. Tire Sci. Technol. 5(2), 83–101 (1977)

    Article  Google Scholar 

  23. I. Zeid, J. Padovan, Finite element modeling of rolling contact. Comput. Struct. 14, 163–170 (1981)

    Article  Google Scholar 

  24. J.T. Oden, T.L. Lin, On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comput. Meth. Appl. Mech. Eng. 57, 297–367 (1986)

    Google Scholar 

  25. R. Kennedy, J. Padovan, Finite element analysis of a steady-state rotating tire subjected to a point load or ground contact. Tire Sci. Technol. 15(4), 243–260 (1987)

    Article  Google Scholar 

  26. R.A. Brockman, W.R. Braisted, Critical speed estimation for aircraft tires. Tire Sci. Technol. 22(2), 121–144 (1994)

    Article  Google Scholar 

  27. S. Gong, in A Study of In-plane Dynamics of Tires. Ph.D. Thesis, Delft University of Technology (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nakajima .

Notes

Notes

Note 15.1 Eq. (15.10)

Equation (15.8) uses the fixed coordinate system, while Eq. (15.10) uses the rotating coordinate system. The relations

$$\begin{aligned} \frac{\partial }{\partial t}_{\text{rotation}} & = \frac{\partial }{\partial t}_{\text{fixed}} + \frac{\partial }{\partial \xi }\frac{\partial \xi }{\partial t}_{\text{fixed}} = \frac{\partial }{\partial t}_{\text{fixed}} + V\frac{\partial }{\partial \xi } \\ \frac{{\partial^{2} }}{{\partial t^{2} }}_{\text{rotation}} & = \frac{{\partial^{2} }}{{\partial t^{2} }}_{\text{fixed}} + 2V\frac{{\partial^{2} }}{\partial \xi \partial t}_{\text{fixed}} + V^{2} \frac{{\partial^{2} }}{{\partial \xi^{2} }} \\ \end{aligned}$$
(15.73)

are thus satisfied for the time derivatives in each coordinate system. The second terms in the above equations are related to the Coriolis force, and the contributions of the second terms are smaller than those of the first and third terms.

Note 15.2 Eqs. (15.29) and (15.30)

Figure 15.19 gives

$$\begin{array}{*{20}l} {d = R_{\text{D}} \left( {1 - \cos \psi_{0} } \right) + a\left( {1 - \cos \theta_{0} } \right) \approx \frac{1}{2}\left( {R_{\text{D}} \psi_{0}^{2} + a\theta_{0}^{2} } \right)} \hfill \\ {R_{\text{D}} \psi_{0} = a\theta_{0} } \hfill \\ {d = \frac{1}{2}\left\{ {R_{\text{D}} \left( {\frac{{a\theta_{0} }}{{R_{\text{D}} }}} \right)^{2} + a\theta_{0}^{2} } \right\} = \frac{{\theta_{0}^{2} }}{2}a\left( {1 + \frac{a}{{R_{\text{D}} }}} \right).} \hfill \\ \end{array}$$
(15.74)

When the shape of the drum is expressed in the coordinate system of the tire, the distance between the tire surface and the drum surface, w0, which corresponds to the displacement from the tire surface to the drum surface, is given by

$$w_{0} = \frac{{a^{2} \theta^{2} }}{2}\left( {\frac{1}{a} + \frac{1}{{R_{\text{D}} }}} \right) - d.$$
(15.75)
Fig. 15.19
figure 19

Tire deformation on a drum

Using the relations ξ0 = aθ0 and ξ = aθ, w0 is rewritten as

$$w_{0} = \frac{{\xi^{2} - \xi_{0}^{2} }}{2}\left( {\frac{1}{a} + \frac{1}{{R_{\text{D}} }}} \right).$$
(15.76)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, Y. (2019). Standing Waves in Tires. In: Advanced Tire Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-13-5799-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5799-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5798-5

  • Online ISBN: 978-981-13-5799-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics