Skip to main content

Abstract

Although robust ILC methods proposed in the previous chapters of this book can effectively improve the control performance [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19], the state of the system does not always change according to the solution of the control law in actual batch production processes. When the system state deviates from a given value, if the same control law is still used to control the system, the state deviation of the system may become larger and larger, and even have a serious impact on the stable operation and product performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, F., Yang, Y., Shao, C.: Robust iterative learning control with applications to injection molding process. Chem. Eng. Sci. 56(24), 7025–7034 (2001)

    Article  Google Scholar 

  2. Shi, J., Gao, F., Wu, T.: Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system. J. Process Control. 15(8), 907–924 (2005)

    Article  Google Scholar 

  3. Shi, J., Gao, F., Wu, T.: From two-dimensional linear quadratic optimal control to iterative learning control. Paper 1. Two-dimensional linear quadratic optimal controls and system analysis. Ind. Eng. Chem. Res. 45(13), 4603–4616 (2006)

    Article  Google Scholar 

  4. Liu, T., Gao, F.: Robust two-dimensional iterative learning control for batch processes with state delay and time-varying uncertainties. Chem. Eng. Sci. 65(23), 6134–6144 (2010)

    Article  Google Scholar 

  5. Shi, J., Gao, F., Wu, T.: Robust iterative learning control design for batch processes with uncertain perturbations and initialization. AIChE J. 52(6), 2171–2187 (2010)

    Article  Google Scholar 

  6. Liu, T., Gao, F., Wang, Y.: IMC-based iterative learning control for batch processes with uncertain time delay. J. Process Control. 20(2), 173–180 (2010)

    Article  Google Scholar 

  7. Hladowski, L., Galkowski, K., Cai, Z., et al.: Experimentally supported 2D systems based iterative learning control law design for error convergence and performance. Control. Eng. Pract. 18(4), 339–348 (2010)

    Article  Google Scholar 

  8. Wang, L., Mo, S., Zhou, D., et al.: Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval time-varying delays. J. Process Control. 21(7), 987–996 (2011)

    Article  Google Scholar 

  9. Wang, L., Mo, S., Zhou, D., et al.: Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures. J. Process Control. 22(7), 1273–1286 (2012)

    Article  Google Scholar 

  10. Liu, T., Wang, Y.: A synthetic approach for robust constrained iterative learning control of piecewise affine batch processes. Automatica 48(11), 2762–2775 (2012)

    Article  MathSciNet  Google Scholar 

  11. Wang, Y., Liu, T., Zhao, Z.: Advanced PI control with simple learning set-point design: Application on batch processes and robust stability analysis. Chem. Eng. Sci. 71(13), 153–165 (2012)

    Article  Google Scholar 

  12. Wang, L., Mo, S., Zhou, D., et al.: Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties. J. Process Control. 23(5), 715–730 (2013)

    Article  Google Scholar 

  13. Wang, L., Chen, X., Gao, F.: An LMI method to robust iterative learning fault-tolerant guaranteed cost control for batch processes. Chin. J. Chem. Eng. (English version) 21(4), 401–411 (2013)

    Article  Google Scholar 

  14. Wang, Y., Yang, Y., Zhao, Z.: Robust stability analysis for an enhanced ILC-based PI controller. J. Process Control. 23(2), 201–214 (2013)

    Article  Google Scholar 

  15. Wang, L., He, X., Zhou, D.: Average dwell time-based optimal iterative learning control for multi-phase batch processes. J. Process Control. 40, 1–12 (2016)

    Article  Google Scholar 

  16. Wang, L., Zhu, C., Yu, J., et al.: Fuzzy iterative learning control for batch processes with interval time-varying delays. Ind. Eng. Chem. Res. 56(14), 3993–4001 (2017)

    Article  Google Scholar 

  17. Wang, L., Shen, Y., Li, B., et al.: Hybrid iterative learning fault-tolerant guaranteed cost control design for multi-phase batch processes. Can. J. Chem. Eng. 96(2), 521–530 (2017)

    Article  Google Scholar 

  18. Wang, L., Shen, Y., Yu, J., et al.: Robust iterative learning control for multi-phase batch processes: an average dwell-time method with 2D convergence indexes. Int. J. Syst. Sci. 49(2), 324–343 (2018)

    Article  MathSciNet  Google Scholar 

  19. Wang, L., Shen, Y., Yu, J., et al.: Robust iterative learning control for multi-phase batch processes: an average dwell-time method with 2D convergence indexes. Int. J. Syst. Sci. 49(2), 1–20 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, R., Gao, F.: State space model predictive control using partial decoupling and output weighting for improved model/plant mismatch performance. Ind. Eng. Chem. Res. 52(2), 817–829 (2013)

    Article  Google Scholar 

  21. Dougherty, D., Cooper, D.: A practical multiple model adaptive strategy for single-loop MPC. Control. Eng. Pract. 11(2), 141–159 (2003)

    Article  Google Scholar 

  22. Zhang, R., Xue, A., Wang, S., Zhang, J., Gao, F.: Partially decoupled approach of extended non-minimal state space predictive functional control for MIMO processes. J. Process Control. 22(5), 837–851 (2012)

    Article  Google Scholar 

  23. Cannon, M., Kouvaritakis, B.: Optimizing prediction dynamics for robust MPC. IEEE Trans. Autom. Control. 50(11), 1892–1897 (2005)

    Article  MathSciNet  Google Scholar 

  24. Liu, G., Mu, J., Rees, D., et al.: Design and stability analysis of networked control systems with random communication time delay using the modified MPC. Int. J. Control. 79(4), 288–297 (2006)

    Article  MathSciNet  Google Scholar 

  25. Borrelli, F., Bemporad, A., Fodor, M., et al.: An MPC/hybrid system approach to traction control. IEEE Trans. Control Syst. Technol. 14(3), 541–552 (2006)

    Article  Google Scholar 

  26. Venkat, A., Hiskens, I., Rawlings, J., et al.: Distributed MPC strategies with application to power system automatic generation control. IEEE Trans. Control Syst. Technol. 16(6), 1192–1206 (2008)

    Article  Google Scholar 

  27. Limon, D., Alvarado, I., Alamo, T., et al.: MPC for tracking piecewise constant references for constrained linear systems. Automatica 44(9), 2382–2387 (2008)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Zhou, D., Gao, F.: Iterative learning model predictive control for multi-phase batch processes. J. Process Control. 18(6), 543–557 (2008)

    Article  Google Scholar 

  29. Zou, Q., Jin, Q., Zhang, R.: Design of fractional order predictive functional control for fractional industrial processes. Chemometr. Intell. Lab. Syst. 152, 34–41 (2016)

    Article  Google Scholar 

  30. Houska, B., Ferreau, H., Diehl, M.: An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10), 2279–2285 (2011)

    Article  MathSciNet  Google Scholar 

  31. Zeilinger, M., Jones, C., Morari, M.: Real-time suboptimal model predictive control using a combination of explicit MPC and online optimization. IEEE. Trans. Autom. Control. 56(7), 1524–1534 (2011)

    Article  MathSciNet  Google Scholar 

  32. Zhang, R., Zou, H., Xue, A., Gao, F.: GA based predictive functional control for batch processes under actuator faults. Chemometr. Intell. Lab. Syst. 137, 67–73 (2014)

    Article  Google Scholar 

  33. Richter, S., Jones, C., Morari, M.: Computational complexity certification for real-time MPC with input constraints based on the fast gradient method. IEEE Trans. Autom. Control. 57(6), 1391–1403 (2012)

    Article  MathSciNet  Google Scholar 

  34. Zhang, R., Cao, Z., Bo, C., Li, P., Gao, F.: New PID controller design using extended non-minimal state space model based predictive functional control structure. Ind. Eng. Chem. Res. 53(8), 3283–3292 (2014)

    Article  Google Scholar 

  35. Flores-Cerrillo, J., Macgregor, J.: Latent variable MPC for trajectory tracking in batch processes. J. Process Control. 15(6), 651–663 (2005)

    Article  Google Scholar 

  36. Suárez, L.: Nonlinear MPC for fed-batch multiple stages sugar crystallization. Chem. Eng. Res. Des. 89(6), 753–767 (2011)

    Article  Google Scholar 

  37. Hermanto, M., Braatz, R., Chiu, M.: Integrated batch-to-batch and nonlinear model predictive control for polymorphic transformation in pharmaceutical crystallization. AIChE J. 57(4), 1008–1019 (2011)

    Article  Google Scholar 

  38. Kwon, S., Nayhouse, M., Orkoulas, G., et al.: A method for handling batch-to-batch parametric drift using moving horizon estimation: application to run-to-run MPC of batch crystallization. Chem. Eng. Sci. 127, 210–219 (2015)

    Article  Google Scholar 

  39. Li, D., Xi, Y., Lu, J., et al.: Synthesis of real-time-feedback-based 2D iterative learning control–model predictive control for constrained batch processes with unknown input nonlinearity. Ind. Eng. Chem. Res. 55(51), 13074–13084 (2016)

    Article  Google Scholar 

  40. Wang, Y., Shi, J., Zhou, D., et al.: Iterative learning fault-tolerant control for batch processes. Ind. Eng. Chem. Res. 45(26), 9050–9060 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Zhang, R., Gao, F. (2020). Iterative Learning Predictive Control for Batch Processes. In: Iterative Learning Stabilization and Fault-Tolerant Control for Batch Processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-5790-9_6

Download citation

Publish with us

Policies and ethics