Skip to main content

Introduction

  • Chapter
  • First Online:
Advances in the Base Force Element Method

Abstract

This chapter will introduce the research background of the Base Force Element Method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bathe, K. J. (1982). Finite element procedures in engineering analysis. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Belytschko, T., & Bachrach, W. E. (1986). Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Computer Methods in Applied Mechanics and Engineering, 54(3), 279–301.

    Article  MathSciNet  MATH  Google Scholar 

  • Cen, S., Fu, X. R., Zhou, G. H., Zhou, M. J., & Li, C. F. (2011a). Shape-free finite element method: The plane hybrid stress-function (HS-F) element method for anisotropic materials. Science China-Physics, Mechanics & Astronomy, 54(4), 653–665.

    Article  Google Scholar 

  • Cen, S., Fu, X. R., & Zhou, M. J. (2011b). 8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes. Computer Methods in Applied Mechanics and Engineering, 200(29–32), 2321–2336.

    Article  MathSciNet  MATH  Google Scholar 

  • Cen, S., Zhou, M. J., & Fu, X. R. (2011c). A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions. Computers & Structures, 89(5–6), 517–528.

    Article  Google Scholar 

  • Cen, S., Zhou, G. H., & Fu, X. R. (2012). A shape-free 8-node plane element unsymmetric analytical trial function method. International Journal for Numerical Methods in Engineering, 91(2), 158–185.

    Article  MATH  Google Scholar 

  • Chen, X. M., Cen, S., Long, Y. Q., & Yao, Z. H. (2004). Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Computers & Structures, 82(1), 35–54.

    Article  Google Scholar 

  • Chen, X. M., Cen, S., Fu, X. R., & Long, Y. Q. (2008). A new quadrilateral area coordinate method (QACM-II) for developing quadrilateral finite element models. International Journal for Numerical Methods in Engineering, 73(13), 1911–1941.

    Article  MATH  Google Scholar 

  • Chen, J., Li, C. J., & Chen, W. J. (2010a). A 17-node quadrilateral spline finite element using the triangular area coordinates. Applied Mathematics and Mechanics, 31(1), 125–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., Li, C. J., & Chen, W. J. (2010b). A family of spline finite elements. Computers & Structures, 88(11–12), 718–727.

    Article  Google Scholar 

  • Cook, R. D. (1981). Concepts and applications of finite element analysis. New York: Wiley.

    MATH  Google Scholar 

  • Fraeijs de Veubeke, B. (1965). Displacement and equilibrium models in the finite element method. In O. C. Zienkiewicz & G. S. Holister (Eds.), Stress analysis (pp. 145–197). New York: Wiley.

    Google Scholar 

  • Fraeijs de Veubeke, B. (1972). A new variational principle for finite elastic displacements. International Journal of Engineering Science, 10(9), 745–763.

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, X. R., Cen, S., Li, C. F., & Chen, X. M. (2010). Analytical trial function method for development of new 8-node plane element based on the variational principle containing airy stress function. Engineering Computations, 27(4), 442–463.

    Article  MATH  Google Scholar 

  • Gao, D. Y. (1999a). Pure complementary energy principle and triality theory in finite elasticity. Mechnics Research Communications, 26(1), 31–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, Y. C. (1999b). Foundation of solid mechanics. Beijing: Railway Publisher of China. (in Chinese).

    Google Scholar 

  • Gao, Y. C. (2001). Asymptotic analysis of the nonlinear Boussinesq problem for a kind of incompressible rubber material (compression case). Journal of Elasticity, 64(2–3), 111–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, Y. C. (2003). A new description of the stress state at a point with applications. Archive of Applied Mechanics, 73(3), 171–183.

    Article  MATH  Google Scholar 

  • Gao, Y. C. (2006). Complementary energy principle for large elastic deformation. Science in China Series G: Physics Mechanics and Astronomy, 49(3), 341–356.

    Article  MATH  Google Scholar 

  • Gao, Y. C., & Chen, S. H. (2001). Analysis of a rubber cone tensioned by a concentrated force. Mechanics Research Communications, 28(1), 49–54.

    Article  MATH  Google Scholar 

  • Gao, Y. C., & Gao, T. J. (2000). Large deformation contact of a rubber notch with a rigid wedge. International Journal of Solids and Structures, 37(32), 4319–4334.

    Article  MATH  Google Scholar 

  • Gao, D. Y., & Strang, G. (1989). Geometric nonlinearity: Potential energy, complementary energy and the gap function. Quarterly of Applied Mathematics, 47(3), 487–504.

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, T. J. R. (1980). Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engineering, 15(9), 1413–1418.

    Article  MathSciNet  MATH  Google Scholar 

  • Koiter, W. T. (1973). On the principle of stationary complementary energy in the nonlinear theory of elasticity. Siam Journal on Applied Mathematics, 25(3), 424–434.

    Article  MATH  Google Scholar 

  • Levinson, M. (1965). The complementary energy theorem in finite elasticity. Journal of Applied Mechanics, 32(4), 826–828.

    Article  Google Scholar 

  • Li, H. G., Cen, S., & Cen, Z. Z. (2008). Hexahedral volume coordinate method (HVCM) and improvements on 3D Wilson hexahedral element. Computer Methods in Applied Mechanics and Engineering, 197(51–52), 4531–4548.

    Article  MATH  Google Scholar 

  • Liu, G. R., Nguyen-Thoi, T., & Lam, K. Y. (2008). A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering, 197(45–48), 3883–3897.

    Article  MathSciNet  MATH  Google Scholar 

  • Long, Y. Q., & Huang, M. F. (1988). A generalized conforming isoparametric element. Applied Mathematics and Mechanics, 9(10), 929–936.

    Article  MATH  Google Scholar 

  • Long, Y. Q., Li, J. X., Long, Z. F., & Cen, S. (1999a). Area coordinates used in quadrilateral elements. Computer Methods in Applied Mechanics and Engineering, 15(8), 533–545.

    MATH  Google Scholar 

  • Long, Z. F., Li, J. X., Cen, S., & Long, Y. Q. (1999b). Some basic formulae for area coordinates used in quadrilateral elements. Computer Methods in Applied Mechanics and Engineering, 15(12), 841–852.

    MATH  Google Scholar 

  • Long, Y. Q., Cen, S., & Long, Z. F. (2009). Advanced finite element method in structural engineering. Berlin, Heidelberg/Beijing: Springer-Verlag GmbH/Tsinghua University Press.

    Book  MATH  Google Scholar 

  • Long, Z. F., Cen, S., Wang, L., Fu, X. R., & Long, Y. Q. (2010). The third form of the quadrilateral area coordinate method (QACM-III): Theory, application, and scheme of composite coordinate interpolation. Finite Elements in Analysis and Design, 46(10), 805–818.

    Article  Google Scholar 

  • Macneal, R. H. (1982). Derivation of element stiffness matrices by assumed strain distributions. Nuclear Engineering and Design, 70(1), 3–12.

    Article  Google Scholar 

  • Ogden, R. W. (1975). A note on variational theorems in non-linear elastostatics. Mathematical Proceedings of the Cambridge Philosophical Society, 77(3), 609–615.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogden, R. W. (1977). Inequalities associated with the inversion of elastic stress deformation relation and their implications. Mathematical Proceedings of the Cambridge Philosophical Society, 81(2), 313–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Ooi, E. T., Rajendran, S., & Yeo, J. H. (2004). A 20-node hexahedron element with enhanced distortion tolerance. International Journal for Numerical Methods in Engineering, 60(15), 2501–2530.

    Article  MATH  Google Scholar 

  • Ooi, E. T., Rajendran, S., & Yeo, J. H. (2008). Remedies to rotational frame dependence and interpolation failure of US-QUAD8 element. Computer Methods in Applied Mechanics and Engineering, 24(11), 1203–1217.

    MathSciNet  MATH  Google Scholar 

  • Patnaik, S. N. (1973). An integrated force method for discrete analysis. International Journal for Numerical Methods in Engineering, 6(2), 237–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Patnaik, S. N. (1986a). The integrated force method versus the standard force method. Computers & Structures, 22(2), 151–163.

    Article  MATH  Google Scholar 

  • Patnaik, S. N. (1986b). The variational energy formulation for the integrated force method. AIAA Journal, 24(1), 129–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, Y. J., & Liu, Y. H. (2009). Base force element method of complementary energy principle for large rotation problems. Acta Mechanica Sinica, 25(4), 507–515.

    Article  MATH  Google Scholar 

  • Peng, Y. J., Dong, Z. L., Peng, B., & Liu, Y. H. (2011). Base force element method (BFEM) on potential energy principle for elasticity problems. International Journal of Mechanics and Materials in Design, 7(3), 245–251.

    Article  Google Scholar 

  • Peng, Y. J., Dong, Z. L., Peng, B., & Zong, N. N. (2012). The application of 2D base force element method (BFEM) to geometrically nonlinear analysis. International Journal of Non-Linear Mechanics, 47(3), 153–161.

    Article  Google Scholar 

  • Pian, T. H. H. (1964). Derivation of element stiffness matrices by assumed stress distributions. AIAA Journal, 2(7), 1333–1336.

    Article  Google Scholar 

  • Pian, T. H. H., & Chen, D. P. (1982). Alternative ways for formulation of hybrid stress elements. International Journal for Numerical Methods in Engineering, 18(11), 1679–1684.

    Article  MATH  Google Scholar 

  • Pian, T. H. H., & Sumihara, K. (1984). Rational approach for assumed stress finite elements. International Journal for Numerical Methods in Engineering, 20(9), 1685–1695.

    Article  MATH  Google Scholar 

  • Piltner, R., & Taylor, R. L. (1997). A systematic constructions of B-bar functions for linear and nonlinear mixed-enhanced finite elements for plane elasticity problems. International Journal for Numerical Methods in Engineering, 44(5), 615–639.

    Article  MATH  Google Scholar 

  • Rajendran, S. (2010). A technique to develop mesh-distortion immune finite elements. Computer Methods in Applied Mechanics and Engineering, 199(17–20), 1044–1063.

    Article  MathSciNet  MATH  Google Scholar 

  • Rajendran, S., & Liew, K. M. (2003). A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. International Journal for Numerical Methods in Engineering, 58(11), 1713–1748.

    Article  MATH  Google Scholar 

  • Reissner, E. (1953). On a variational theorem for finite elastic deformation. Journal of Mathematics and Physics, 32(2), 129–135.

    Article  MathSciNet  MATH  Google Scholar 

  • Santos, H. A. F. A. (2011). Complementary-energy methods for geometrically non-linear structural models: An overview and recent developments in the analysis of frames. Archives of Computational Methods in Engineering, 18(1), 405–440.

    Article  Google Scholar 

  • Santos, H. A. F. A., & Almeida Paulo, C. I. (2011). On a pure complementary energy principle and a force-based finite element formulation for nonlinear elastic cables. International Journal of Non-Linear Mechanics, 46(2), 395–406.

    Article  Google Scholar 

  • Santos, H. A. F. A., & de Almeida, J. P. M. (2010). Equilibrium-based finite element formulation for the geometrically exact analysis of planar framed structures. Journal of Engineering Mechanics, 136(12), 1474–1490.

    Article  Google Scholar 

  • Simo, J. C., & Rifai, M. S. (1990). A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29(8), 1595–1638.

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, L. M., Chen, W. J., & Liu, Y. G. (1984). Formulation of quasi-conforming element and Hu-Washizu principle. Computers & Structures, 19(1–2), 247–250.

    MATH  Google Scholar 

  • Taylor, R. L. & Zienkiewicz, O. C. (1979). Complementary energy with penalty functions in finite element analysis. In R. Glowinski (Ed.), Energy methods in finite element analysis. New York: Wiley.

    Google Scholar 

  • Taylor, R. L., Beresford, P. J., & Wilson, E. L. (1976). A non-conforming element for stress analysis. International Journal for Numerical Methods in Engineering, 10(6), 1211–1219.

    Article  MATH  Google Scholar 

  • Washizu, K. (1982). Variational methods in elasticity and plasticity. New York: Pergamon Press.

    MATH  Google Scholar 

  • Wilson, E. L., Tayler, R. L., Doherty, W. P., & Ghaboussi, J. (1973). Incompatible displacement models. In S. J. Fenves, et al. (Eds.), Numerical and computational methods in structural mechanics (pp. 43–57). New York: Academic Press.

    Google Scholar 

  • Zhang, C. H., Wang, D. D., Zhang, J. L., Feng, W., & Huang, Q. (2007). On the equivalence of various hybrid finite elements and a new orthogonalization method for explicit element stiffness formulation. Finite Elements in Analysis and Design, 43(4), 321–332.

    Article  MathSciNet  Google Scholar 

  • Zienkiewicz, O. C. (1977). The finite element method. New York: McGraw-Hill.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijiang Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, Y., Liu, Y. (2019). Introduction. In: Advances in the Base Force Element Method. Springer, Singapore. https://doi.org/10.1007/978-981-13-5776-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5776-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5775-6

  • Online ISBN: 978-981-13-5776-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics