Skip to main content

Introduction

  • Chapter
  • First Online:
  • 623 Accesses

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Cranes are material handling machines, which are used in different industries (i.e., construction, manufacturing, shipbuilding, and freight handling) for transporting heavy materials that humans cannot handle. Cranes have the capability of moving the load vertically (i.e., lifting up and lowering) and also in a horizontal plane, either along a straight or a curved path. In order to meet the requirements of handling a specific load in various industries, cranes with different operating mechanisms are utilized. For lifting a load, a hoisting mechanism is used, which consists of either a single or a set of multiple ropes suspended from the support mechanism of the crane. A gripper or a hook at the bottom free end of the rope(s) grasps the load, while an actuator/motor located at the top rope support mechanism hoists up and down the load by using a system of sheaves .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Rahman EM, Nayfeh AH (2002) Pendulation reduction in boom cranes using cable length manipulation. Nonlinear Dyn 27(3):255–269

    Article  MATH  Google Scholar 

  • Abdel-Rahman EM, Nayfeh AH (2003) Two-dimensional control for ship-mounted cranes: a feasibility study. J Vib Control 9(12):1327–1342

    Article  MATH  Google Scholar 

  • Abdel-Rahman EM, Nayfeh AH, Masoud ZN (2003) Dynamics and control of cranes: a review. J Vib Control 9(7):863–908

    MATH  Google Scholar 

  • Araya H, Kakuzen M, Kinugawa H et al (2004) Level luffing control system for crawler cranes. Autom Constr 13(5):689–697

    Article  Google Scholar 

  • Arena A, Casalotti A, Lacarbonara W et al (2015) Dynamics of container cranes: three-dimensional modeling, full-scale experiments, and identification. Int J Mech Sci 93:8–21

    Article  Google Scholar 

  • Augustin D, Maurer H (2001) Second order sufficient conditions and sensitivity analysis for the optimal control of a container crane under state constraints. Optimization 49(4):351–368

    Article  MathSciNet  MATH  Google Scholar 

  • Azeloglu CO, Sagirli A (2015) Active vibration control of container cranes against earthquake by the use of LMI based mixed H2/H state-feedback controller. Shock Vib. http://dx.doi.org/10.1155/2015/589289

  • Azeloglu CO, Sagirli A, Edincliler A (2013) Mathematical modelling of the container cranes under seismic loading and proving by shake table. Nonlinear Dyn 73(1–2):143–154

    Article  Google Scholar 

  • Bak MK, Hansen MR (2013a) Analysis of offshore knuckle boom crane—part one: modeling and parameter identification. Model Identif Control 34(4):157–174

    Article  Google Scholar 

  • Bak MK, Hansen MR (2013b) Analysis of offshore knuckle boom crane—part two: motion control. Model Identif Control 34(4):175–181

    Article  Google Scholar 

  • Bartolini G, Pisano A, Usai E (2003) Output-feedback control of container cranes: a comparative analysis. Asian J Control 5(4):578–593

    Article  Google Scholar 

  • Boschetti G, Caracciolo R, Richiedei D et al (2014) Moving the suspended load of an overhead crane along a pre-specified path: a non-time based approach. Robot Comput-Integr Manuf 30(3):256–264

    Article  Google Scholar 

  • Carmona IG, Collado J (2016) Control of a two wired hammer head tower crane. Nonlinear Dyn 84(4):2137–2148

    Article  Google Scholar 

  • Cekus D, Posiadala B (2011) Vibration model and analysis of three-member telescopic boom with hydraulic cylinder for its radius change. Int J Bifurcation Chaos 21(10):2883–2892

    Article  MATH  Google Scholar 

  • Chang CY, Lie HW (2012) Real-time visual tracking and measurement to control fast dynamics of overhead cranes. IEEE Trans Ind Electron 59(3):1640–1649

    Article  Google Scholar 

  • Duong SC, Uezato E, Kinjo H et al (2012) A hybrid evolutionary algorithm for recurrent neural network control of a three-dimensional tower crane. Autom Constr 23:55–63

    Article  Google Scholar 

  • Ebrahimi M, Ghayour M, Madani SM et al (2011) Swing angle estimation for anti-sway overhead crane control using load cell. Int J Control Autom Syst 9(2):301–309

    Article  Google Scholar 

  • Ellermann K, Kreuzer E (2003) Nonlinear dynamics in the motion of floating cranes. Multibody Syst Dyn 9(4):377–387

    Article  MathSciNet  MATH  Google Scholar 

  • Ellermann K, Kreuzer E, Markiewicz M (2002) Nonlinear dynamics of floating cranes. Nonlinear Dyn 27(2):107–183

    Article  MATH  Google Scholar 

  • Ellermann K, Kreuzer E, Markiewicz M (2003) Nonlinear primary resonances of a floating crane. Meccanica 38(1):5–18

    Article  MATH  Google Scholar 

  • Fang YC, Dixon WE, Dawson DM et al (2003) Nonlinear coupling control laws for an under actuated overhead crane system. IEEE-ASME Trans Mechatron 8(3):418–423

    Article  Google Scholar 

  • Fang YC, Wang PC, Sun N et al (2014) Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans Ind Electron 61(1):414–427

    Article  Google Scholar 

  • Hara K, Yamamoto T, Kobayashi A et al (1989) Jib crane control to suppress load swing. Int J Syst Sci 20(5):715–731

    Article  MathSciNet  MATH  Google Scholar 

  • Henry RJ, Masoud ZN, Nayfeh AH et al (2001) Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation. J Vib Control 7(8):1253–1264

    Article  MATH  Google Scholar 

  • Huang J, Liang Z, Zang Q (2015) Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams. Mech Syst Signal Proc 54–55:357–366

    Article  Google Scholar 

  • Huang J, Maleki E, Singhose W (2013) Dynamics and swing control of mobile boom cranes subject to wind disturbances. IET Contr Theory Appl 7(9):1187–1195

    Article  MathSciNet  Google Scholar 

  • Jerman B, Kramar J (2008) A study of the horizontal inertial forces acting on the suspended load of slewing cranes. Int J Mech Sci 50(3):490–500

    Article  Google Scholar 

  • Ju F, Choo YS, Cui FS (2006) Dynamic response of tower crane induced by the pendulum motion of the payload. Int J Solids Struct 43(2):376–389

    Article  MATH  Google Scholar 

  • Kreuzer E, Pick MA, Rapp C et al (2014) Unscented Kalman filter for real-time load swing estimation of container cranes using rope forces. J Dyn Syst Meas Control-Trans ASME 136(4):041009

    Article  Google Scholar 

  • Lee HH (2005) Motion planning for three-dimensional overhead cranes with high-speed load hoisting. Int J Control 78(12):875–886

    Article  MathSciNet  MATH  Google Scholar 

  • Lee HH, Huang CH, Ku SC et al (2014) Efficient visual feedback method to control a three-dimensional overhead crane. IEEE Trans Ind Electron 61(8):4073–4083

    Article  Google Scholar 

  • Liu RJ, Li SH, Ding SH (2012) Nested saturation control for overhead crane systems. Trans Inst Meas Control 34(7):862–875

    Article  Google Scholar 

  • Mizumoto I, Chen T, Ohdaira S et al (2007) Adaptive output feedback control of general MIMO systems using multirate sampling and its application to a cart-crane system. Automatica 43(12):2077–2085

    Article  MathSciNet  MATH  Google Scholar 

  • Ngo QH, Hong K-S (2009) Skew control of a quay container crane. J Mech Sci Technol 23(12):3332–3339

    Article  Google Scholar 

  • Sagirli A, Bogoclu ME, Omurlu VE (2003a) Modeling the dynamics and kinematics of a telescopic rotary crane by the Bond Graph method (Part I). Nonlinear Dyn 33(4):337–351

    Article  MATH  Google Scholar 

  • Sagirli A, Bogoclu ME, Omurlu VE (2003b) Modeling the dynamics and kinematics of a telescopic rotary crane by the bond graph method: part II. Nonlinear Dyn 33(4):353–367

    Article  MATH  Google Scholar 

  • Schaper U, Dittrich C, Arnold E et al (2014) 2-DOF skew control of boom cranes including state estimation and reference trajectory generation. Control Eng Practice 33:63–75

    Article  Google Scholar 

  • Shah UH, Hong K-S (2014) Input shaping control of a nuclear power plant’s fuel transport system. Nonlinear Dyn 77(4):1737–1748

    Article  Google Scholar 

  • Sun N, Fang YC (2012) New energy analytical results for the regulation of under actuated overhead cranes: An end-effector motion-based approach. IEEE Trans Ind Electron 59(12):4723–4734

    Article  Google Scholar 

  • Sun N, Fang YC, Chen H et al (2016) Slew/translation positioning and swing suppression for 4-DOF tower cranes with parametric uncertainties: Design and hardware experimentation. IEEE Trans Ind Electron 63(10):6407–6418

    Article  Google Scholar 

  • Sun GF, Liu J (2006) Dynamic responses of hydraulic crane during luffing motion. Mech Mach Theory 41(11):1273–1288

    Article  MATH  Google Scholar 

  • Tomczyk J, Cink J, Kosucki A (2014) Dynamics of an overhead crane under a wind disturbance condition. Autom Constr 42:100–111

    Article  Google Scholar 

  • Tuan LA, Lee SG, Nho LC et al (2015) Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable. Proc Inst Mech Eng Part I-J Syst Control Eng 229(7):662–674

    Article  Google Scholar 

  • Zrnic ND, Bosnjak SM, Hoffmann K (2010) Parameter sensitivity analysis of non-dimensional models of quayside container cranes. Math Comput Model Dyn Syst 16(2):145–160

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keum-Shik Hong .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, KS., Shah, U.H. (2019). Introduction. In: Dynamics and Control of Industrial Cranes. Advances in Industrial Control. Springer, Singapore. https://doi.org/10.1007/978-981-13-5770-1_1

Download citation

Publish with us

Policies and ethics