Skip to main content

Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria

  • Chapter
  • First Online:
Methods in Rhizosphere Biology Research

Abstract

The field of agriculture requires new strategies to control the damage caused by phytopathogens and to effectively promote plant growth and production. Until recently, one of the best alternatives was the application of microorganisms exhibiting biocontrol and plant growth-promoting traits. Therefore, to select the best microorganisms, it is essential to analyse these beneficial activities based on reliable search methods and to ensure the greatest extent possible and their successful application in the field. In this chapter, we have summarized and compared different methods to detect direct and indirect activities that promote plant growth, with an emphasis on rhizobacteria. Moreover, we have compiled a detailed description of the methods that could be of interest for analysing bacterial isolates that exhibit potential plant growth-promoting activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Arora NK, Verma M (2017) Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7:381

    Article  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  Google Scholar 

  • Bashan Y, De-Bashan LE, Prabhu SR, Hernandez J-P (2014) The quantitative relationship between nitrogen fixation and the acetylene-reduction assay. Aust J Biol Sci 23:1015–1026

    Google Scholar 

  • Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  Google Scholar 

  • Brink SC (2016) Unlocking the secrets of the rhizosphere. Trends Plant Sci 21:169–170

    Article  CAS  Google Scholar 

  • Burris RH, Wilson PW (1957) Methods for measurement of nitrogen fixation. Methods Enzymol 4:355–366

    Article  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • de los Santos Villalobos S, Parra Cota FI, Herrera Sepúlveda A, Valenzuela Aragón B, Estrada Mora JC (2018) Colección de microorganismosedáficos y endófitosnativosparacontribuira la seguridadalimentarianacional. Rev Mex Cienc Agríc 9:191–202

    Google Scholar 

  • de los Santos-Villalobos S, Barrera-Galicia GC, Miranda-Salcedo MA, Peña-Cabriales JJ (2012) Burkholderiacepacia XXVI siderophore with biocontrolcapacity against Colletotrichumgloeosporioides. World J Microbiol Biotechnol 28:2615–2623

    Article  Google Scholar 

  • de los Santos-Villalobos S, de Folter S, Délano-Frier JP, Gómez-Lim MA, Guzmán-Ortiz DA, Peña-Cabriales JJ (2013) Growth promotion and flowering induction in mango by Burkholderia and Rhizobium inoculation: morphometric, biochemical and molecular events. J Plant Growth Regul 32:615–627

    Article  Google Scholar 

  • Dekkers LC, Mulders IH, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato–Fusariumoxysporumf.sp. radicislycopersicibiocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant-Microbe Interact 13:1177–1183

    Article  CAS  Google Scholar 

  • Domingo JL (2016) Safety assessment of GM plants: an updated review of the scientific literature. Food Chem Toxicol 95:12–18

    Article  CAS  Google Scholar 

  • Elad Y, Baker R (1985) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusariumoxysporum. Phytopathology 75:1047–1052

    Article  CAS  Google Scholar 

  • Fahad S et al (2015) Phytohormones and plant responses to salinity stress: a review. J Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Fett WF, Osman SF, Dunn MF (1987) Auxin production by plant-pathogenic pseudomonads and xanthomonads. Appl Environ Microbiol 53:1839–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  Google Scholar 

  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K (1994) The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol 35:1261–1265

    Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  Google Scholar 

  • Ghosh S, Sengupta C, Maiti TK, Basu PS (2008) Production of 3-indolylacetic acid in root nodules and culture by a Rhizobium species isolated from root nodules of the leguminous pulse Phaseolusmungo. Folia Microbiol 53:351

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195

    Article  CAS  Google Scholar 

  • Halda-Alija L (2003) Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncuseffusus L. Can J Microbiol 49:781–787

    Article  CAS  Google Scholar 

  • Hernández-León R et al (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92

    Article  Google Scholar 

  • Hernández-Salmerón JE, Prieto-Barajas CM, Valencia-Cantero E, Moreno-Hagelsieb G, Santoyo G (2014) Isolation and characterization of genetic variability in bacteria with β-hemolytic and antifungal activity isolated from the rhizosphere of Medicagotruncatula plants. Gen Mol Res 13:4967–4975

    Article  Google Scholar 

  • Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  CAS  Google Scholar 

  • Höfte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161:464–471

    Article  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186–191

    Google Scholar 

  • Jackson ML (2005) Soil chemical analysis: advanced course. UW-Madison Libraries Parallel Press.

    Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  Google Scholar 

  • Karadeniz A, Topcuoğlu ŞF, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Leclère V et al (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  Google Scholar 

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25

    Article  CAS  Google Scholar 

  • Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107:928–936

    Article  CAS  Google Scholar 

  • Lopez-Lozano NE, Carcaño-Montiel MG, Bashan Y (2016) Using native trees and cacti to improve soil potential nitrogen fixation during long-term restoration of arid lands. Plant Soil 403:317–329

    Article  CAS  Google Scholar 

  • Mabit L, Zapata F, Dercon G, Benmansour M, Bernard C, Walling DE (2014) Assessment of soil erosion and sedimentation: the role of fallout radionuclides. Iaea Tecdoc Series 3.

    Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  Google Scholar 

  • Martínez-Absalón S et al (2014) Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogenBotrytis cinerea. Biocontrol Sci Tech 24:1349–1362

    Article  Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20

    Chapter  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  Google Scholar 

  • Meyer JA, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology 107:319–328

    CAS  Google Scholar 

  • Mus F et al (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  Google Scholar 

  • Nesme J et al (2016) Back to the future of soil metagenomics. Front Microbiol 7:73

    Article  Google Scholar 

  • Orozco-Mosqueda MC, Velázquez-Becerra C, Macías-Rodríguez LI, Santoyo G, Flores-Cortez I, Alfaro-Cuevas R, Valencia-Cantero E (2013) Arthrobacteragilis UMCV2 induces iron acquisition in Medicagotruncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil 362:51–66

    Article  CAS  Google Scholar 

  • Orozco-Mosqueda MC, del Carmen Rocha-Granados M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res. https://doi.org/10.1016/j.micres.2018.01.005

  • Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110

    Article  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  Google Scholar 

  • Phinney BO (1983) The history of gibberellins. In: Crozier A (ed) The biochemistry and physiology of gibberellins, vol 1, pp 19–52

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  CAS  Google Scholar 

  • Reich A, Schibli A (2006) High performance thin-layer chromatography for the analysis of medicinal plants. Thieme, New York/Stuttgart

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  Google Scholar 

  • Rojas-Solís D, Hernández-Pacheco CE, Santoyo G (2016) Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Physalis ixocarpa Brot. ex Horm.). Rev Chapingo Ser Hortic 22:45–57

    Google Scholar 

  • Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, Rocha-Granados MC, Macías-Rodríguez L, Santoyo G (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    Article  CAS  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Tech 22:855–872

    Article  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  Google Scholar 

  • Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M (2014) Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun 5:4983

    Article  CAS  Google Scholar 

  • Scher FM, Ziegle JS, Kloepper JW (1984) A method for assessing the root-colonizing capacity of bacteria on maize. Can J Microbiol 30:151–157

    Article  Google Scholar 

  • Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70:4363–4366

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Stotzky G, Schenk S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382

    Article  CAS  Google Scholar 

  • Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorearotundata L.) minisetts by Bacillus subtilis isolated from culturablecowdungmicroflora. Pol J Microbiol 56:103

    CAS  PubMed  Google Scholar 

  • Taylor KG, Konhauser KO (2011) Iron in Earth surface systems: a major player in chemical and biological processes. Elements 7:83–88

    Article  CAS  Google Scholar 

  • Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes Environ 23:89–93

    Article  Google Scholar 

  • Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophicendophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6:e17968

    Article  CAS  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  Google Scholar 

  • Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, de los Santos-Villalobos S (2018) The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Rev Mex Fitopatol 36:95–130

    Google Scholar 

  • Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade Mountain range. Appl Environ Microbiol 65:374–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson EO (2003) The future of life. Vintage Books, New York

    Google Scholar 

  • Zehr JP, Mellon MT, Zani S (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol 64:3444–3450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Fernando WG, Kievit TRD, Berry C, Daayf F, Paulitz TC (2006) Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction. Can J Microbiol 52:476–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.S. thanks the Coordinación de la InvestigaciónCientífica of the Universidad Michoacana de San Nicolás de Hidalgo for the financial support to research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Santoyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santoyo, G., Sánchez-Yáñez, J.M., de los Santos-Villalobos, S. (2019). Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. In: Reinhardt, D., Sharma, A. (eds) Methods in Rhizosphere Biology Research. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-5767-1_8

Download citation

Publish with us

Policies and ethics