From Catenary Optics to Engineering Optics 2.0

  • Xiangang LuoEmail author


In this chapter, we summarize the applications of catenary optics in optical engineering. Based on the novel properties of catenary optical fields and catenary structures, it is shown that traditional optical laws and theories could be extended and generalized, which opens a door towards the next-generation engineering optics.


Optical engineering Diffraction limit Generalized snell’s law Subwavelength electromagnetics 


  1. 1.
    K. Iizuka, Engineering Optics, 3rd edn. (Springer, 2008)Google Scholar
  2. 2.
    P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)CrossRefGoogle Scholar
  4. 4.
    F. Capasso, The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Luo, Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724-4738 (2018)CrossRefGoogle Scholar
  6. 6.
    X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 1804680 (2018)Google Scholar
  7. 7.
    X. Luo, M. Pu, X. Ma, X. Li, Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int. J. Antennas Propag. 2015, 204127 (2015)Google Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Basic Books, 1963)Google Scholar
  18. 18.
    R.P. Crease, The most beautiful experiment. Phys. World 15, 19 (2002)CrossRefGoogle Scholar
  19. 19.
    X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)CrossRefGoogle Scholar
  20. 20.
    X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)CrossRefGoogle Scholar
  21. 21.
    H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G. W.’t Hooft, D. Lenstra, E.R. Eliel, Plasmon-assisted two-slit transmission: Young’s experiment revisited. Phys. Rev. Lett. 94, 053901 (2005)Google Scholar
  22. 22.
    R. Zia, M.L. Brongersma, Surface plasmon polariton analogue to Young’s double-slit experiment. Nat. Nanotechnol. 2, 426 (2007)CrossRefGoogle Scholar
  23. 23.
    X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  25. 25.
    H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)CrossRefGoogle Scholar
  26. 26.
    T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, X. Luo, Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett. 92, 101501 (2008)CrossRefGoogle Scholar
  27. 27.
    T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)CrossRefGoogle Scholar
  28. 28.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)CrossRefGoogle Scholar
  29. 29.
    R. Welti, Light transmission through two slits: the Young experiment revisited. J. Opt. Pure Appl. Opt. 8, 606 (2006)CrossRefGoogle Scholar
  30. 30.
    M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)CrossRefGoogle Scholar
  31. 31.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  32. 32.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRefGoogle Scholar
  33. 33.
    Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, X. Luo, Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Sci. Rep. 5, 15320 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)CrossRefGoogle Scholar
  35. 35.
    D.O.S. Melville, R.J. Blaikie, Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)CrossRefGoogle Scholar
  36. 36.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRefGoogle Scholar
  37. 37.
    L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D.B. Bogy, X. Zhang, Maskless plasmonic lithography at 22 nm resolution. Sci. Rep. 1, 175 (2011)CrossRefGoogle Scholar
  38. 38.
    F.J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, L. Kuipers, Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010)CrossRefGoogle Scholar
  39. 39.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)CrossRefGoogle Scholar
  40. 40.
    X. Luo, Plasmonic metalens for nanofabrication. Natl. Sci. Rev. 5, 137–138 (2018)CrossRefGoogle Scholar
  41. 41.
    T. Laufer, Thermal Fluid-Structure analysis of an optical device including radiation and conduction, in Star European Conference (2011)Google Scholar
  42. 42.
    H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, X. Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005)CrossRefGoogle Scholar
  43. 43.
    J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010)CrossRefGoogle Scholar
  44. 44.
    L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)CrossRefGoogle Scholar
  45. 45.
    T. Xu, A. Agrawal, M. Abashin, K.J. Chau, H.J. Lezec, All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470–474 (2013)CrossRefGoogle Scholar
  46. 46.
    L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C. Wang, X. Luo, Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater. Horiz. 4, 290–296 (2017)CrossRefGoogle Scholar
  47. 47.
    J.A. Coles, Some reflective properties of the tapetum lucidum of the cat’s eye. J. Physiol. 212, 393–409 (1971)CrossRefGoogle Scholar
  48. 48.
    T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, X. Luo, Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl. Phys. B 97, 175–179 (2009)CrossRefGoogle Scholar
  49. 49.
    L. Bourke, R.J. Blaikie, Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography. J. Opt. Soc. Am. A 34, 2243–2249 (2017)CrossRefGoogle Scholar
  50. 50.
    L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, X. Luo, Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography. Adv. Opt. Mater. 5, 1700429 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013)CrossRefGoogle Scholar
  52. 52.
    A.A. Orlov, S.V. Zhukovsky, I.V. Iorsh, P.A. Belov, Controlling light with plasmonic multilayers. Photonics Nanostruct. - Fundam. Appl. 14, 213–230 (2014)CrossRefGoogle Scholar
  53. 53.
    W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, X. Luo, Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142–21148 (2008)CrossRefGoogle Scholar
  54. 54.
    S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, X. Zhang, Ray optics at a deep-subwavelength scale: a transformation optics approach. Nano Lett. 8, 4243–4247 (2008)CrossRefGoogle Scholar
  55. 55.
    J. Sun, T. Xu, N.M. Litchinitser, Experimental demonstration of demagnifying hyperlens. Nano Lett. 16, 7905–7909 (2016)CrossRefGoogle Scholar
  56. 56.
    A. Dudley, M.P.J. Lavery, M.J. Padgett, A. Forbes, Unraveling Bessel beams. Opt. Photonics News 22, 24–29 (2013)Google Scholar
  57. 57.
    J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, X. Luo, Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale 7, 18805–18812 (2015)CrossRefGoogle Scholar
  58. 58.
    F. Qin, M. Hong, Breaking the diffraction limit in far field by planar metalens. Sci. China Phys. Mech. Astron. 60, 044231 (2017)CrossRefGoogle Scholar
  59. 59.
    Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, X. Luo, Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev. 12, 1800064 (2018)CrossRefGoogle Scholar
  60. 60.
    C. Wang, D. Tang, Y. Wang, Z. Zhao, J. Wang, M. Pu, Y. Zhang, W. Yan, P. Gao, X. Luo, Super-resolution optical telescopes with local light diffraction shrinkage. Sci. Rep. 5, 18485 (2015)CrossRefGoogle Scholar
  61. 61.
    H.P. Stahl, Survey of cost models for space telescopes. Opt. Eng. 49, 053005 (2010)CrossRefGoogle Scholar
  62. 62.
    R.A. Hyde, Eyeglass. 1. Very large aperture diffractive telescopes. Appl. Opt. 38, 4198–4212 (1999)CrossRefGoogle Scholar
  63. 63.
    P.D. Atcheson, C. Stewart, J. Domber, K. Whiteaker, J. Cole, P. Spuhler, A. Seltzer, J.A. Britten, S.N. Dixit, B. Farmer, L. Smith, MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes, in (2012), Vol. 8442, pp. 844221-8442–14Google Scholar
  64. 64.
    Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, X. Luo, Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016)CrossRefGoogle Scholar
  65. 65.
    L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009)CrossRefGoogle Scholar
  66. 66.
    S. Ishii, V.M. Shalaev, A.V. Kildishev, Holey-metal lenses: sieving single modes with proper phases. Nano Lett. 13, 159–163 (2013)CrossRefGoogle Scholar
  67. 67.
    L. Lin, X.M. Goh, L.P. McGuinness, A. Roberts, Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. Nano Lett. 10, 1936 (2010)CrossRefGoogle Scholar
  68. 68.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  69. 69.
    X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as highly efficient and compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)CrossRefGoogle Scholar
  70. 70.
    M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017)CrossRefGoogle Scholar
  71. 71.
    A. Arbabi, E. Arbabi, S.M. Kamali, Y. Horie, S. Han, A. Faraon, Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016)CrossRefGoogle Scholar
  72. 72.
    Y. Xu, Y. Fu, H. Chen, Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016)CrossRefGoogle Scholar
  73. 73.
    D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014)CrossRefGoogle Scholar
  74. 74.
    P. Lalanne, P. Chavel, Metalenses at visible wavelengths: an historical fresco. Proc SPIE 10113, 101130F (2017)Google Scholar
  75. 75.
    A.A. Fathnan, D.A. Powell, Bandwidth and size limits of achromatic printed-circuit metasurfaces. Opt. Express 26, 29440–29450 (2018)CrossRefGoogle Scholar
  76. 76.
    W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018)CrossRefGoogle Scholar
  77. 77.
    S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D.P. Tsai, A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018)CrossRefGoogle Scholar
  78. 78.
    M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., 1914)Google Scholar
  79. 79.
    K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)CrossRefGoogle Scholar
  80. 80.
    K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 106, 6044–6047 (2009)CrossRefGoogle Scholar
  81. 81.
    C. Hu, Z. Zhao, X. Chen, X. Luo, Realizing near-perfect absorption at visible frequencies. Opt. Express 17, 11039–11044 (2009)CrossRefGoogle Scholar
  82. 82.
    A. Moreau, C. Ciraci, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith, Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012)CrossRefGoogle Scholar
  83. 83.
    M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)CrossRefGoogle Scholar
  84. 84.
    T.D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, T. Nagao, Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers. ACS Photonics 2, 964–970 (2015)CrossRefGoogle Scholar
  85. 85.
    Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)CrossRefGoogle Scholar
  86. 86.
    D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013)CrossRefGoogle Scholar
  87. 87.
    M.R. Singh, K. Davieau, J.J.L. Carson, Effect of quantum interference on absorption of light in metamaterial hybrids. J. Phys. Appl. Phys. 49, 445103 (2016)CrossRefGoogle Scholar
  88. 88.
    W.W. Salisbury, Absorbent body for electromagnetic waves, U.S. patent 2599944 (1952)Google Scholar
  89. 89.
    A. Naqavi, S.P. Loke, M.D. Kelzenberg, D.M. Callahan, T. Tiwald, E.C. Warmann, P. Espinet-González, N. Vaidya, T.A. Roy, J.-S. Huang, T.G. Vinogradova, H.A. Atwater, Extremely broadband ultralight thermally-emissive optical coatings. Opt. Express 26, 18545–18562 (2018)CrossRefGoogle Scholar
  90. 90.
    C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Opt. Express 17, 16745–16749 (2009)CrossRefGoogle Scholar
  91. 91.
    C. Wu, G. Shvets, Design of metamaterial surfaces with broadband absorbance. Opt. Lett. 37, 308–310 (2012)CrossRefGoogle Scholar
  92. 92.
    S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301(R) (2015)CrossRefGoogle Scholar
  93. 93.
    M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)CrossRefGoogle Scholar
  94. 94.
    W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)CrossRefGoogle Scholar
  95. 95.
    S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, W. Wen, Perfect electromagnetic absorption at one-atom-thick scale. Appl. Phys. Lett. 107, 181112 (2015)CrossRefGoogle Scholar
  96. 96.
    M.A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012)CrossRefGoogle Scholar
  97. 97.
    P.-Y. Chen, C. Argyropoulos, A. Alù, Broadening the cloaking bandwidth with non-Foster metasurfaces. Phys. Rev. Lett. 111, 233001 (2013)CrossRefGoogle Scholar
  98. 98.
    X. Wu, C. Hu, Y. Wang, M. Pu, C. Huang, C. Wang, X. Luo, Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv. 3, 022114 (2013)CrossRefGoogle Scholar
  99. 99.
    A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)CrossRefGoogle Scholar
  100. 100.
    Y. Huang, M. Pu, P. Gao, Z. Zhao, X. Li, X. Ma, X. Luo, Ultra-broadband large-scale infrared perfect absorber with optical transparency. Appl. Phys. Express 10, 112601 (2017)CrossRefGoogle Scholar
  101. 101.
    H.T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, K. Sakoda, Dual-band infrared metasurface thermal emitter for CO2 sensing. Appl. Phys. Lett. 105, 121107 (2014)CrossRefGoogle Scholar
  102. 102.
    A. Kohiyama, M. Shimizu, H. Yugami, Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems. Appl. Phys. Express 9, 112302 (2016)CrossRefGoogle Scholar
  103. 103.
    Y. Guo, C.L. Cortes, S. Molesky, Z. Jacob, Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012)CrossRefGoogle Scholar
  104. 104.
    S.I. Maslovski, C.R. Simovski, S.A. Tretyakov, Overcoming black body radiation limit in free space: metamaterial superemitter. New J. Phys. 18, 013034 (2016)CrossRefGoogle Scholar
  105. 105.
    J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter 11, 6621 (1999)Google Scholar
  106. 106.
    L. Hu, A. Narayanaswamy, X. Chen, G. Chen, Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl. Phys. Lett. 92, 133106 (2008)CrossRefGoogle Scholar
  107. 107.
    J. Ng, H. Chen, C.T. Chan, Metamaterial frequency-selective superabsorber. Opt. Lett. 34, 644–646 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-fabrication and Micro-engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations