Catenary Optical Fields for Thermal Emission Engineering

  • Xiangang LuoEmail author


In this chapter, the basic concepts and examples of thermal emission engineering with catenary optical fields are discussed. First, it is shown that the near-field coupling featured by catenary function can be used to break the far-field limit on thermal radiation. Second, by leveraging the complex catenary optical fields in strongly coupled subwavelength structures, many of the radiation properties such as coherence, spectral and polarization selectivity could be readily controlled.


Catenary electromagnetics Thermal emission Metamaterials 


  1. 1.
  2. 2.
    M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., Philadelphia, 1914)Google Scholar
  3. 3.
    K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)CrossRefGoogle Scholar
  4. 4.
    M. Vollmer, K.-P. Mollmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2010)CrossRefGoogle Scholar
  5. 5.
    A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)CrossRefGoogle Scholar
  6. 6.
    M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. Adv. Sci. 2016, 1500360 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Synnefa, M. Santamouris, K. Apostolakis, On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol. Energy 81, 488–497 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tang, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017)CrossRefGoogle Scholar
  9. 9.
    A.G. Worthing, Deviation from Lambert’s law and polarization of light emitted by incandescent tungsten, tantalum and molybdenum and changes in the optical constants of tungsten with temperature. J. Opt. Soc. Am. 13, 635–649 (1926)CrossRefGoogle Scholar
  10. 10.
    J.L. Pezzaniti, D. Chenault, K. Gurton, M. Felton, Detection of obscured targets with IR polarimetric imaging, in Proceedings of SPIE (2014), vol. 9072, p. 90721DGoogle Scholar
  11. 11.
    E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, J.-J. Greffet, Radiative heat transfer at the nanoscale. Nat. Photonics 3, 514–517 (2009)CrossRefGoogle Scholar
  12. 12.
    D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M.M. Qazilbash, P. Reddy, E. Meyhofer, Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018)CrossRefGoogle Scholar
  13. 13.
    S.M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge Research Center, USA, 1959)Google Scholar
  14. 14.
    D. Polder, M. Van Hove, Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303–3314 (1971)CrossRefGoogle Scholar
  15. 15.
    J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11, 6621 (1999)CrossRefGoogle Scholar
  16. 16.
    L. Hu, A. Narayanaswamy, X. Chen, G. Chen, Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl. Phys. Lett. 92, 133106 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Shen, A. Narayanaswamy, G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009)CrossRefGoogle Scholar
  18. 18.
    X. Liu, Z. Zhang, Near-field thermal radiation between metasurfaces. ACS Photonics 2, 1320–1326 (2015)CrossRefGoogle Scholar
  19. 19.
    S.-A. Biehs, P. Ben-Abdallah, Revisiting super-Planckian thermal emission in the far-field regime. Phys. Rev. B 93, 165405 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Ng, H. Chen, C.T. Chan, Metamaterial frequency-selective superabsorber. Opt. Lett. 34, 644–646 (2009)CrossRefGoogle Scholar
  21. 21.
    X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 1804680 (2018)Google Scholar
  22. 22.
    S.I. Maslovski, C.R. Simovski, S.A. Tretyakov, Overcoming black body radiation limit in free space: metamaterial superemitter. New J. Phys. 18, 013034 (2016)CrossRefGoogle Scholar
  23. 23.
    J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Coherent emission of light by thermal sources. Nature 416, 61–64 (2002)CrossRefGoogle Scholar
  24. 24.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20, 28017–28024 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)CrossRefGoogle Scholar
  27. 27.
    Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, X. Luo, Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt. Express 21, 11618–11627 (2013)CrossRefGoogle Scholar
  29. 29.
    W.W. Salisbury, Absorbent body for electromagnetic waves. U.S. Patent 2599944 (1952)Google Scholar
  30. 30.
    M. Diem, T. Koschny, C.M. Soukoulis, Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B 79 (2009)Google Scholar
  31. 31.
    X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)CrossRefGoogle Scholar
  32. 32.
    N. Mattiucci, G.D. Aguanno, A. Alu, C. Argyropoulos, J.V. Foreman, M.J. Bloemer, Taming the thermal emissivity of metals: a metamaterial approach. Appl. Phys. Lett. 100, 201109 (2012)CrossRefGoogle Scholar
  33. 33.
    M.A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, F. Capasso, Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Phys. Rev. X 3, 041004 (2013)Google Scholar
  34. 34.
    T. Inoue, M. De Zoysa, T. Asano, S. Noda, Realization of narrowband thermal emission with optical nanostructures. Optica 2, 27–35 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, X. Luo, Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt. Express 21, 32207–32216 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)CrossRefGoogle Scholar
  37. 37.
    H.T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, K. Sakoda, Dual-band infrared metasurface thermal emitter for CO2 sensing. Appl. Phys. Lett. 105, 121107 (2014)CrossRefGoogle Scholar
  38. 38.
    M.D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, Conversion of broadband to narrowband thermal emission through energy recycling. Nat. Photonics 6, 535–539 (2012)CrossRefGoogle Scholar
  39. 39.
    Y. Huang, M. Pu, P. Gao, Z. Zhao, X. Li, X. Ma, X. Luo, Ultra-broadband large-scale infrared perfect absorber with optical transparency. Appl. Phys. Express 10, 112601 (2017)CrossRefGoogle Scholar
  40. 40.
    G. Ohman, The pseudo-Brewster angle. IEEE Trans. Antennas Propag. 25, 903–904 (1977)CrossRefGoogle Scholar
  41. 41.
    R.M.A. Azzam, Complex reflection coefficients of p- and s-polarized light at the pseudo-Brewster angle of a dielectric–conductor interface. J. Opt. Soc. Am. A 30, 1975–1979 (2013)CrossRefGoogle Scholar
  42. 42.
    X. Ma, M. Pu, X. Li, Y. Guo, X. Luo, All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron. Adv. 2, 180023 (2019)Google Scholar
  43. 43.
    K. Wang, D.M. Mittleman, Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004)CrossRefGoogle Scholar
  44. 44.
    CST Microwave Studios (CST-Computer Simulation Technology AG, 2013)Google Scholar
  45. 45.
    S. Granick, Y. Zhu, H. Lee, Slippery questions about complex fluids flowing past solids. Nat. Mater. 2, 221–227 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-fabrication and Micro-engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations