Skip to main content

Beam Shaping via Microscopic Meta-surface-wave

  • Chapter
  • First Online:
Catenary Optics
  • 742 Accesses

Abstract

In previous chapter, we discussed the theory, design principle, and application of phase modulation based on plasmonic nanoslits, nanoholes, and other nanoapertures. The coupling of SPPs at the interfaces forms catenary plasmons featured by catenary-liked intensity profile. This can be understood from two aspects: first, the analytic mathematical description of plasmonic modes in metal–insulator–metal layered waveguide takes the form of hyperbolic cosine and sine functions; second, the summation of evanescent tails of waveguide modes would form a catenary. In this chapter, we show a generalized concept of catenary optical fields. The interference fields of two subwavelength scatters would follow a catenary shape. For instance, the two sides of a subwavelength slit perforated in a thin metallic screen could generate strong localized fields featured by a catenary function. This effect can be also observed in periodic slits, i.e., 1D grating. Interestingly, the equivalent impedance of such grating is described by the catenary of equal strength, which is termed catenary dispersion. Based on these properties, we proposed the concept of microscopic meta-surface-wave, which forms one important basis to discuss the light–matter interaction in subwavelength structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)

    Article  CAS  Google Scholar 

  2. J.A. Polo, A. Lakhtakia, Surface electromagnetic waves: a review. Laser. Photonics. Rev. 5, 234–246 (2011)

    Article  Google Scholar 

  3. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)

    Article  Google Scholar 

  4. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  CAS  Google Scholar 

  5. P. Cheben, R. Halir, J.H. Schmid, H.A. Atwater, D.R. Smith, Subwavelength integrated photonics. Nature 560, 565–572 (2018)

    Article  CAS  Google Scholar 

  6. T. Xu, Y.-K. Wu, X. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010)

    Google Scholar 

  7. M. Khorasaninejad, F. Capasso, Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017)

    Article  Google Scholar 

  8. M. Pu, X. Ma, X. Li, Y. Guo, X. Luo, Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 5, 4361 (2017)

    Article  CAS  Google Scholar 

  9. X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)

    Article  Google Scholar 

  10. S.B. Glybovski, S.A. Tretyakov, P.A. Belov, Y.S. Kivshar, C.R. Simovski, Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1–72 (2016)

    Article  CAS  Google Scholar 

  11. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)

    Article  CAS  Google Scholar 

  12. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  Google Scholar 

  13. X. Luo, Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724-4738 (2018)

    Article  CAS  Google Scholar 

  14. X. Luo, T. Ishihara, in Sub 100 nm lithography based on plasmon polariton resonance. 2003 International Microprocesses and Nanotechnology Conference (IEEE, 2003), pp. 138–139

    Google Scholar 

  15. T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)

    Article  Google Scholar 

  16. M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of metallic surface-relief gratings. J. Opt. Soc. Am. A 3, 1780–1787 (1986)

    Article  CAS  Google Scholar 

  17. M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, X. Luo, Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt. Express 21, 992–1001 (2013)

    Article  Google Scholar 

  18. L.B. Whitbourn, R.C. Compton, Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary. Appl. Opt. 24, 217–220 (1985)

    Article  CAS  Google Scholar 

  19. Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)

    Article  CAS  Google Scholar 

  20. T. Senior, Approximate boundary conditions. IEEE Trans. Antennas Propag. 29, 826–829 (1981)

    Article  Google Scholar 

  21. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)

    Article  Google Scholar 

  22. X. Luo, M. Pu, X. Li, X. Ma, Broadband spin hall effect of light in single nanoapertures. Light. Sci. Appl. 6, e16276 (2017)

    Article  CAS  Google Scholar 

  23. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)

    Article  CAS  Google Scholar 

  24. H.-T. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express 20, 7165–7172 (2012)

    Article  Google Scholar 

  25. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, X. Luo, Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016)

    Article  CAS  Google Scholar 

  26. Z. Ma, S.M. Hanham, P. Albella, B. Ng, H.T. Lu, Y. Gong, S.A. Maier, M. Hong, Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photonics 3, 1010–1018 (2016)

    Article  CAS  Google Scholar 

  27. R. Paniagua-Domínguez, Y.F. Yu, A.E. Miroshnichenko, L.A. Krivitsky, Y.H. Fu, V. Valuckas, L. Gonzaga, Y.T. Toh, A.Y.S. Kay, B.S. Luk’yanchuk, A.I. Kuznetsov, Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016)

    Google Scholar 

  28. D. Van Labeke, D. Gerard, B. Guizal, F.I. Baida, L. Li, An angle-independent frequency selective surface in the optical range. Opt. Express 14, 11945–11951 (2006)

    Article  Google Scholar 

  29. M. Pu, X. Li, Y. Guo, X. Ma, X. Luo, Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017)

    Article  CAS  Google Scholar 

  30. X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)

    Article  Google Scholar 

  31. M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo, Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015)

    Article  CAS  Google Scholar 

  32. S. Simms, V. Fusco, Chessboard reflector for RCS reduction. Electron. Lett. 44, 316–317 (2008)

    Article  Google Scholar 

  33. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, S. Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013)

    Article  Google Scholar 

  34. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo, Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016)

    Article  Google Scholar 

  35. Y. Guo, J. Yan, M. Pu, X. Li, X. Ma, Z. Zhao, X. Luo, Ultra-wideband manipulation of electromagnetic waves by bilayer scattering engineered gradient metasurface. RSC Adv. 8, 13061–13066 (2018)

    Article  CAS  Google Scholar 

  36. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)

    Article  CAS  Google Scholar 

  37. G.G. Macfarlane, Quasi-stationary field theory and its application to diaphragms and junctions in transmission lines and wave guides. J. Inst. Electr. Eng. Part III A Radiolocation 93, 703–719 (1946)

    Google Scholar 

  38. J.R. Swandic, Bandwidth Limits and Other Considerations for Monostatic RCS Reduction by Virtual Shaping (Naval Surface Warfare Center, Carderock Div., 2004)

    Google Scholar 

  39. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  CAS  Google Scholar 

  40. X. Ni, Z.J. Wong, M. Mrejen, Y. Wang, X. Zhang, An ultrathin invisibility skin cloak for visible light. Science 349, 1310–1314 (2015)

    Article  CAS  Google Scholar 

  41. C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, X. Luo, Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photonics 5, 1718–1725 (2018)

    Article  CAS  Google Scholar 

  42. Y. Huang, M. Pu, F. Zhang, J. Luo, X. Li, X. Ma, X. Luo, Broadband functional metasurface: Achieving non-linear phase generation towards achromatic surface cloaking and lensing. Adv. Opt. Mater. 1801480 (2019)

    Google Scholar 

  43. F. Gires, P. Tournois, Interferometre utilisable pour la compression d’ impulsions lumineuses modulees en frequence. C. R. Acad. Sci. Paris 258, 6112–6115 (1964)

    Google Scholar 

  44. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  CAS  Google Scholar 

  45. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband light bending with plasmonic nanoantennas. Science 335, 427–427 (2012)

    Article  Google Scholar 

  46. Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo, High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater. 6, 1800592 (2018)

    Article  Google Scholar 

  47. R.K. Luneburg, Mathematical Theory of Optics (Brown University, 1944)

    Google Scholar 

  48. H. Ma, T. Cui, Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124 (2010)

    Article  Google Scholar 

  49. N. Kundtz, D.R. Smith, Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2010)

    Article  CAS  Google Scholar 

  50. Y.-Y. Zhao, Y.-L. Zhang, M.-L. Zheng, X.-Z. Dong, X.-M. Duan, Z.-S. Zhao, Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev. 10, 665–672 (2016)

    Article  CAS  Google Scholar 

  51. D. Wu, J.-N. Wang, L.-G. Niu, X.-L. Zhang, S.Z. Wu, Q.-D. Chen, L.P. Lee, H.B. Sun, Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging. Adv. Opt. Mater. 2, 751–758 (2014)

    Article  CAS  Google Scholar 

  52. K. Liu, Y. Guo, M. Pu, X. Ma, X. Li, X. Luo, Wide field-of-view and broadband terahertz beam steering based on gap plasmon geodesic antennas. Sci. Rep. 7, 41642 (2017)

    Article  CAS  Google Scholar 

  53. J. L. McFarland, Catenary geodesic lens antenna. U.S. patent 3,383,691 (1968)

    Google Scholar 

  54. A. Arbabi, E. Arbabi, S.M. Kamali, Y. Horie, S. Han, A. Faraon, Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016)

    Article  CAS  Google Scholar 

  55. B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017)

    Article  CAS  Google Scholar 

  56. T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon 10, 554–560 (2016)

    Article  CAS  Google Scholar 

  57. M. Pu, X. Li, Y. Guo, X. Ma, X. Luo, Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017)

    Article  CAS  Google Scholar 

  58. W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, J. Tian, Metasurface enabled wide-angle fourier lens. Adv. Mater. 30, 1706368 (2018)

    Article  Google Scholar 

  59. Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, X. Luo, Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci. Rep. 5, 17733 (2015)

    Article  CAS  Google Scholar 

  60. W. Luo, S. Sun, H.-X. Xu, Q. He, L. Zhou, Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys. Rev. Appl. 7, 044033 (2017)

    Article  Google Scholar 

  61. Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, X. Luo, Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016)

    Article  CAS  Google Scholar 

  62. F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo, All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv. Funct. Mater. 27, 1704295 (2017)

    Article  Google Scholar 

  63. F. Zhang, M. Pu, J. Luo, H. Yu, X. Luo, Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron. Eng. 44, 319–325 (2017)

    Google Scholar 

  64. J.P. Balthasar Mueller, N.A. Rubin, R.C. Devlin, B. Groever, F. Capasso, Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017)

    Google Scholar 

  65. P. Zhang, S. Gong, R. Mittra, Beam-shaping technique based on generalized laws of refraction and reflection. IEEE Trans. Antennas Propag. 66, 771–779 (2018)

    Article  Google Scholar 

  66. C. Huang, W. Pan, X. Ma, B. Zhao, J. Cui, X. Luo, Using reconfigurable transmit array to achieve beam-steering and polarization manipulation applications. IEEE Trans. Antennas Propag. 63, 4801–4810 (2015)

    Article  Google Scholar 

  67. J.Y. Lau, S.V. Hum, Reconfigurable transmit array design approaches for beamforming applications. IEEE Trans. Antennas Propag. 60, 5679–5689 (2012)

    Article  Google Scholar 

  68. W. Pan, C. Huang, P. Chen, M. Pu, X. Ma, X. Luo, A beam steering horn antenna using active frequency selective surface. IEEE Trans. Antennas Propag. 61, 6218–6223 (2013)

    Article  Google Scholar 

  69. Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016)

    Article  CAS  Google Scholar 

  70. Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, M. Qiu, Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev. 11, 1700091 (2017)

    Article  Google Scholar 

  71. Y. Chen, X. Li, Y. Sonnefraud, A.I. Fernández-Domínguez, X. Luo, M. Hong, S.A. Maier, Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep. 5, 8660 (2015)

    Article  CAS  Google Scholar 

  72. P. Hosseini, C.D. Wright, H. Bhaskaran, An optoelectronic framework enabled by low-dimensional phase change films. Nature 511, 206–211 (2014)

    Article  CAS  Google Scholar 

  73. C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 10, 986–994 (2016)

    Article  CAS  Google Scholar 

  74. M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018)

    Article  Google Scholar 

  75. A. Shaltout, J. Liu, A. Kildishev, V. Shalaev, Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2, 860–863 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Beam Shaping via Microscopic Meta-surface-wave. In: Catenary Optics. Springer, Singapore. https://doi.org/10.1007/978-981-13-4818-1_6

Download citation

Publish with us

Policies and ethics