Catenary Plasmons for Sub-diffraction-Limited Imaging and Nanolithography

  • Xiangang LuoEmail author


According to its definition, the interference of two counter-propagating evanescent waves would form a typical hyperbolic cosine catenary optical field. At a given wavelength, the attenuation would be much larger for higher order evanescent waves, leading to a deeper catenary curve. As a result, the shape of catenary optical fields is deeply related to the horizontal wavevector of evanescent wave. In this chapter, we first discuss the catenary optical fields induced by coupled surface plasmons (catenary plasmons) in metal–dielectric multilayers. Then their applications in sub-diffraction-limited imaging and lithography are systematically investigated.


Catenary plasmon Coupled plasmon Plasmonic lithography Diffraction limit 


  1. 1.
    P. Yeh, Optical Waves in Layered Media, 2nd edn. (Wiley, Hoboken, 2005)Google Scholar
  2. 2.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Luo, M. Pu, X. Ma, X. Li, Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int. J. Antennas Propag. 2015, 204127 (2015)Google Scholar
  4. 4.
    G. Ren, C. Wang, G. Yi, X. Tao, X. Luo, Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics 8, 1065–1072 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Wu, C. Hu, M. Wang, M. Pu, X. Luo, Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory. Opt. Express 23, 10396–10403 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  7. 7.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, Berlin, 2007)CrossRefGoogle Scholar
  8. 8.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRefGoogle Scholar
  9. 9.
    B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)CrossRefGoogle Scholar
  10. 10.
    S.A. Ramakrishna, T.M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, Boca Raton, 2009)Google Scholar
  11. 11.
    X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)CrossRefGoogle Scholar
  12. 12.
    X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)CrossRefGoogle Scholar
  13. 13.
    R.P. Crease, The most beautiful experiment. Phys. World 15, 19 (2002)CrossRefGoogle Scholar
  14. 14.
    P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Liu, Y. Luo, Z. Zhao, W. Zhang, G. Gao, B. Zeng, C. Wang, X. Luo, Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes. Sci. Rep. 6, 30450 (2016)CrossRefGoogle Scholar
  16. 16.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRefGoogle Scholar
  17. 17.
    H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, X. Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005)CrossRefGoogle Scholar
  18. 18.
    D. Melville, R. Blaikie, Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)CrossRefGoogle Scholar
  19. 19.
    P. Chaturvedi, W. Wu, V.J. Logeeswaran, Z. Yu, M.S. Islam, S.Y. Wang, R.S. Williams, N.X. Fang, A smooth optical superlens. Appl. Phys. Lett. 96, 043102 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-field microscopy through a SiC superlens. Science 313, 1595 (2006)CrossRefGoogle Scholar
  21. 21.
    X. Luo, Plasmonic metalens for nanofabrication. Natl. Sci. Rev. 5, 137–138 (2018)CrossRefGoogle Scholar
  22. 22.
    D.B. Shao, S.C. Chen, Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl. Phys. Lett. 86, 253107 (2005)CrossRefGoogle Scholar
  23. 23.
    T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, X. Luo, Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl. Phys. B 97, 175–179 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, X. Luo, Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt. Express 21, 20683–20691 (2013)CrossRefGoogle Scholar
  25. 25.
    Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, X. Luo, Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods. Opt. Express 24, 27115–27126 (2016)CrossRefGoogle Scholar
  26. 26.
    C. Wang, Y. Zhao, D. Gan, C. Du, X. Luo, Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films. Opt. Express 16, 4217–4227 (2008)CrossRefGoogle Scholar
  27. 27.
    L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, X. Luo, Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography. Adv. Opt. Mater. 5, 1700429 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Wang, P. Gao, X. Tao, Z. Zhao, M. Pu, P. Chen, X. Luo, Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl. Phys. Lett. 103, 031911 (2013)CrossRefGoogle Scholar
  29. 29.
    Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686–1686 (2007)CrossRefGoogle Scholar
  30. 30.
    L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Hirano, M. Aniya, A rational explanation of cross-profile morphology for glacial valleys and of glacial valley development. Earth Surf. Process. Landf. 13, 707–716 (1988)CrossRefGoogle Scholar
  32. 32.
    G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, X. Luo, Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Adv. Opt. Mater. 3, 1248–1256 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Liu, Y. Luo, W. Kong, K. Liu, W. Du, C. Zhao, P. Gao, Z. Zhao, C. Wang, M. Pu, X. Luo, Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. Opt. Mater. Express 8, 199–209 (2018)CrossRefGoogle Scholar
  34. 34.
    H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, X. Luo, Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons. Opt. Express 25, 20511–20521 (2017)CrossRefGoogle Scholar
  35. 35.
    Z. Zhang, J. Luo, M. Song, H. Yu, Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography. Appl. Phys. Lett. 107, 241904 (2015)CrossRefGoogle Scholar
  36. 36.
    L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C. Wang, X. Luo, Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater. Horiz. 4, 290–296 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)CrossRefGoogle Scholar
  38. 38.
    M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)CrossRefGoogle Scholar
  39. 39.
    Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)CrossRefGoogle Scholar
  40. 40.
    E.S. Kim, Y.M. Kim, K.C. Choi, Surface plasmon-assisted nano-lithography with a perfect contact aluminum mask of a hexagonal dot array. Plasmonics 11, 1337–1342 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  42. 42.
    Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, X. Luo, Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, G. Bartal, Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018)CrossRefGoogle Scholar
  44. 44.
    S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, G. Bartal, Optical skyrmion lattice in evanescent electromagnetic fields. Arxiv:1805.11839 (2018)CrossRefGoogle Scholar
  45. 45.
    J. Zhou, C. Wang, Z. Zhao, Y. Wang, J. He, X. Tao, X. Luo, Design and theoretical analyses of tip–insulator–metal structure with bottom–up light illumination: formations of elongated symmetrical plasmonic hot spot at sub-10 nm resolution. Plasmonics 8, 1073–1078 (2013)CrossRefGoogle Scholar
  46. 46.
    M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)CrossRefGoogle Scholar
  47. 47.
    Y. Wang, N. Yao, W. Zhang, J. He, C. Wang, Y. Wang, Z. Zhao, X. Luo, Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme. Plasmonics 10, 1607–1613 (2015)CrossRefGoogle Scholar
  48. 48.
    S. Kim, H. Jung, Y. Kim, J. Jiang, J.W. Hahn, Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch. Adv. Mater. 24, OP337–OP344 (2012)Google Scholar
  49. 49.
    X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as highly efficient and compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)CrossRefGoogle Scholar
  50. 50.
    D. McGloin, K. Dholakia, Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-fabrication and Micro-engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations