Catenary Structures for Spin-Dependent Coupling of Waveguide Modes

  • Xiangang LuoEmail author


The geometric phase in catenary structures can not only be exploited to control the propagation direction in free space, but also be used to convert freely propagating beams to guiding waves. In this chapter, we first describe how catenary apertures could realize efficient and polarization-dependent excitation of surface plasmon polaritons (SPPs). Compared with discrete structures with the same size, catenary structures have led to much higher conversion efficiency and extinction ratio between the left and right channels. Besides plasmonic optical circuits, silicon photonics is of great importance in future engineering optics, which has enabled new types of nanophotonic applications, including optical interconnects for data communications and ultra-fast optical communications systems. Especially, the high index contrast and well-established complementary metal–oxide–semiconductor (CMOS) compatible processing make silicon-on-insulator (SOI) as an attractive platform for optical information processing. Section 3.2 presents a combination of catenary subwavelength structures with SOI waveguide, which provides much more freedom for the spin-dependent light coupling. In Sect. 3.3, it is shown that a single-curved SOI waveguide could also couple circular polarized beam to different channels when the curvature is comparable to the wavelength.


Unidirectional excitation Catenary waveguide Integrated optics 


  1. 1.
    S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons. Phys. Rev. Lett. 108, 213907 (2012)CrossRefGoogle Scholar
  2. 2.
    F.J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G.A. Wurtz, A.V. Zayats, Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Lin, J.P.B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, F. Capasso, Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)CrossRefGoogle Scholar
  6. 6.
    T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, X. Luo, Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett. 92, 101501 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.W. Qiu, S. Zhang, T. Zentgraf, Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  9. 9.
    X. Luo, M. Pu, X. Li, X. Ma, Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl. 6, e16276 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2, e70 (2013)CrossRefGoogle Scholar
  11. 11.
    D. Taillaert, W. Bogaerts, P. Bienstman, T.F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum Electron. 38, 949–955 (2002)CrossRefGoogle Scholar
  12. 12.
    R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, J.G. Wangüemert-Pérez, Waveguide grating coupler with subwavelength microstructures. Opt. Lett. 34, 1408–1410 (2009)CrossRefGoogle Scholar
  13. 13.
    D. Benedikovic, P. Cheben, J.H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, M. Dado, Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides. Opt. Express 23, 22628–22635 (2015)CrossRefGoogle Scholar
  14. 14.
    Z. Ge, L. Zhang, G. Wang, W. Zhang, M. Liu, S. Li, L. Wang, Q. Sun, W. Ren, J. Si, W. Zhao, On-chip router elements based on silicon hybrid plasmonic waveguide. IEEE Photonics Technol. Lett. 29, 952–955 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Wang, T. Liu, Four-port polarization and topological charge controlled directional plasmonic coupler. IEEE Photonics Technol. Lett. 28, 2391–2394 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Bernal Arango, A. Kwadrin, A.F. Koenderink, Plasmonic antennas hybridized with dielectric waveguides. ACS Nano 6, 10156–10167 (2012)CrossRefGoogle Scholar
  17. 17.
    T.P.H. Sidiropoulos, M.P. Nielsen, T.R. Roschuk, A.V. Zayats, S.A. Maier, R.F. Oulton, Compact optical antenna coupler for silicon photonics characterized by third-harmonic generation. ACS Photonics 1, 912–916 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Vercruysse, P. Neutens, L. Lagae, N. Verellen, P. Van Dorpe, Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide. ACS Photonics 4, 1398–1402 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A.C. Overvig, M. Lu, A. Stein, A.M. Agarwal, M. Lončar, N. Yu, Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nano 12, 675–683 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Guo, M. Pu, X. Li, X. Ma, X. Luo, Ultra-broadband spin-controlled directional router based on single optical catenary integrated on silicon waveguide. Appl. Phys. Express 11, 092202 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Guo, M. Pu, X. Li, X. Ma, S. Song, Z. Zhao, X. Luo, Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction. IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018)CrossRefGoogle Scholar
  22. 22.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1985)Google Scholar
  23. 23.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)CrossRefGoogle Scholar
  24. 24.
    F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo, All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv. Funct. Mater. 27, 1704295 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)CrossRefGoogle Scholar
  27. 27.
    M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 392, 45–57 (1984)CrossRefGoogle Scholar
  28. 28.
    F.J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, A. Martínez, Resolving light handedness with an on-chip silicon microdisk. ACS Photonics 1, 762–767 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-fabrication and Micro-engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations