Spin-Controlled Beam Shaping with Catenary Subwavelength Structures

  • Xiangang LuoEmail author


In this chapter, we describe the photonic spin–orbit coupling in catenary-shaped subwavelength structures. First of all, the basic theories of geometric phase, spin-momentum locking are used to introduce the catenary of equal strength, which could generate a phase profile with equal phase gradient. Then, a general mathematical approach is provided to design various continuous structures deformed from the catenary function. These structures are used to realize broadband photonic spin Hall effect, flat lenses, orbital angular momentum, Bessel and Airy beam generators. The intrinsic limitation on the efficiency of a single-layer catenary metasurface is discussed. To realize high-efficiency functional spin-controlled beam shaping, the reflective and all-dielectric configurations have been presented. Finally, it is shown that the coherent control originally utilized in lasers and absorbers could be leveraged to dynamically control the output intensity.


Spin Hall effect Geometric phase Optical vortex Flat lens Dielectric metasurface 


  1. 1.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, Hoboken, 2007)Google Scholar
  2. 2.
    M.G. Raymer, B.J. Smith, The Maxwell wave function of the photon, The Nature of Light: What Is a Photon? (SPIE, Bellingham, 2005), pp. 1–5Google Scholar
  3. 3.
    K.Y. Bliokh, D. Smirnova, F. Nori, Quantum spin Hall effect of light. Science 348, 1448–1451 (2015)CrossRefGoogle Scholar
  4. 4.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, Berlin, 2007)CrossRefGoogle Scholar
  5. 5.
    D. Gilbert, On the mathematical theory of suspension bridges, with tables for facilitating their construction. Philos. Trans. R. Soc. Lond. 116, 202–218 (1826)CrossRefGoogle Scholar
  6. 6.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  7. 7.
    M.V. Berry, The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987)CrossRefGoogle Scholar
  8. 8.
    Z. Bomzon, V. Kleiner, E. Hasman, Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001)CrossRefGoogle Scholar
  9. 9.
    R. Bhandari, Polarization of light and topological phases. Phys. Rep. 281, 1–64 (1997)CrossRefGoogle Scholar
  10. 10.
    D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)CrossRefGoogle Scholar
  12. 12.
    R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, F. Capasso, Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo, All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv. Funct. Mater. 27, 1704295 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Chen, Z. Li, Y. Zhang, H. Cheng, J. Tian, Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 6, 1800104 (2018)CrossRefGoogle Scholar
  15. 15.
    X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)CrossRefGoogle Scholar
  16. 16.
    X. Luo, M. Pu, X. Li, X. Ma, Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl. 6, e16276 (2017)CrossRefGoogle Scholar
  17. 17.
    H.A. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)CrossRefGoogle Scholar
  18. 18.
    A.Y. Nikitin, D. Zueco, F.J. Garcia-Vidal, L. Martin-Moreno, Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness. Phys. Rev. B 78, 165429 (2008)CrossRefGoogle Scholar
  19. 19.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  20. 20.
    N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, E. Hasman, Optical spin Hall effects in plasmonic chains. Nano Lett. 11, 2038–2042 (2011)CrossRefGoogle Scholar
  21. 21.
    D. McGloin, K. Dholakia, Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005)CrossRefGoogle Scholar
  22. 22.
    A. Ciattoni, B. Crosignani, P. Di Porto, Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections. Opt. Commun. 177, 9–13 (2000)CrossRefGoogle Scholar
  23. 23.
    A.V. Krasavin, A.S. Schwanecke, N.I. Zheludev, M. Reichelt, T. Stroucken, S.W. Koch, E.M. Wright, Polarization conversion and “focusing” of light propagating through a small chiral hole in a metallic screen. Appl. Phys. Lett. 86, 201105 (2005)CrossRefGoogle Scholar
  24. 24.
    F.J. García-Vidal, E. Moreno, J.A. Porto, L. Martín-Moreno, Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95, 103901 (2005)CrossRefGoogle Scholar
  25. 25.
    M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)CrossRefGoogle Scholar
  26. 26.
    L.B. Whitbourn, R.C. Compton, Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary. Appl. Opt. 24, 217–220 (1985)CrossRefGoogle Scholar
  27. 27.
    Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, X. Luo, Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016)CrossRefGoogle Scholar
  28. 28.
    F. Zhang, M. Pu, J. Luo, H. Yu, X. Luo, Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron. Eng. 44, 319–325 (2017)Google Scholar
  29. 29.
    X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as highly efficient and compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)CrossRefGoogle Scholar
  30. 30.
    N.R. Heckenberg, R. McDuff, C.P. Smith, A.G. White, Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992)CrossRefGoogle Scholar
  31. 31.
    G. Rui, W. Chen, D.C. Abeysinghe, R.L. Nelson, Q. Zhan, Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna. Opt. Express 20, 19297–19304 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Pu, X. Li, Y. Guo, X. Ma, X. Luo, Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017)CrossRefGoogle Scholar
  33. 33.
    W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, J. Tian, Metasurface enabled wide-angle Fourier lens. Adv. Mater. 30, 1706368 (2018)CrossRefGoogle Scholar
  34. 34.
    J. Kedmi, A.A. Friesem, Optimal holographic Fourier-transform lens. Appl. Opt. 23, 4015–4019 (1984)CrossRefGoogle Scholar
  35. 35.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)CrossRefGoogle Scholar
  36. 36.
    H. Ma, T. Cui, Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124 (2010)CrossRefGoogle Scholar
  37. 37.
    N. Kundtz, D.R. Smith, Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2010)CrossRefGoogle Scholar
  38. 38.
    L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006)CrossRefGoogle Scholar
  39. 39.
    N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, E. Hasman, Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013)CrossRefGoogle Scholar
  40. 40.
    E.T.F. Rogers, J. Lindberg, T. Roy, S. Savo, J.E. Chad, M.R. Dennis, N.I. Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012)CrossRefGoogle Scholar
  41. 41.
    D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, X. Luo, Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev. 9, 713–719 (2015)CrossRefGoogle Scholar
  42. 42.
    Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, X. Luo, Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev. 12, 1800064 (2018)CrossRefGoogle Scholar
  43. 43.
    F. Aieta, M.A. Kats, P. Genevet, F. Capasso, Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015)CrossRefGoogle Scholar
  44. 44.
    F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, M. Hong, Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci. Rep. 5, 09977 (2015)CrossRefGoogle Scholar
  45. 45.
    M.V. Berry, N.L. Balazs, Nonspreading wave packets. Am. J. Phys. 47, 264 (1979)CrossRefGoogle Scholar
  46. 46.
    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating airy beams. Phys. Rev. Lett. 99, 213901 (2007)CrossRefGoogle Scholar
  47. 47.
    S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photonics Rev. 2, 299–313 (2008)CrossRefGoogle Scholar
  48. 48.
    E. Brasselet, G. Gervinskas, G. Seniutinas, S. Juodkazis, Topological shaping of light by closed-path nanoslits. Phys. Rev. Lett. 111, 193901 (2013)CrossRefGoogle Scholar
  49. 49.
    M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo, Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015)CrossRefGoogle Scholar
  50. 50.
    G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, S. Zhang, Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015)CrossRefGoogle Scholar
  51. 51.
    J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4, 651–654 (1987)CrossRefGoogle Scholar
  52. 52.
    H. Gao, M. Pu, X. Li, X. Ma, Z. Zhao, Y. Guo, X. Luo, Super-resolution imaging with a Bessel lens realized by a geometric metasurface. Opt. Express 25, 13933–13943 (2017)CrossRefGoogle Scholar
  53. 53.
    A. Dudley, M.P.J. Lavery, M.J. Padgett, A. Forbes, Unraveling Bessel beams. Opt. Photonics News 22, 24–29 (2013)Google Scholar
  54. 54.
    J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)CrossRefGoogle Scholar
  55. 55.
    K. Dholakia, P. Reece, M. Gu, Optical micromanipulation. Chem. Soc. Rev. 37, 42–55 (2008)CrossRefGoogle Scholar
  56. 56.
    J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, X. Luo, Generation and detection of orbital angular momentum via metasurface. Sci. Rep. 6, 24286 (2016)CrossRefGoogle Scholar
  57. 57.
    X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S.N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, A. Alù, Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency. Adv. Mater. 27, 1195–1200 (2015)CrossRefGoogle Scholar
  58. 58.
    Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, X. Luo, Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci. Rep. 5, 17733 (2015)CrossRefGoogle Scholar
  59. 59.
    X. Tan, Anomalous scattering-induced circular dichroism in continuously shaped metasurface. Opto-Electron. Eng. 44, 87–91 (2017)Google Scholar
  60. 60.
    Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)CrossRefGoogle Scholar
  61. 61.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)CrossRefGoogle Scholar
  62. 62.
    X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)CrossRefGoogle Scholar
  63. 63.
    D.G. Baranov, A.E. Krasnok, T. Shegai, A. Alù, Y.D. Chong, Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017)CrossRefGoogle Scholar
  64. 64.
    Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)CrossRefGoogle Scholar
  65. 65.
    W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)CrossRefGoogle Scholar
  66. 66.
    C. Yan, M. Pu, J. Luo, Y. Huang, X. Li, X. Ma, X. Luo, Coherent perfect absorption of electromagnetic wave in subwavelength structures. Opt. Laser Technol. 101, 499–506 (2018)CrossRefGoogle Scholar
  67. 67.
    M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)CrossRefGoogle Scholar
  68. 68.
    M. Pu, Q. Feng, C. Hu, X. Luo, Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7, 733–738 (2012)CrossRefGoogle Scholar
  69. 69.
    S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301(R) (2015)CrossRefGoogle Scholar
  70. 70.
    Y. Wang, M. Pu, C. Hu, Z. Zhao, C. Wang, X. Luo, Dynamic manipulation of polarization states using anisotropic meta-surface. Opt. Commun. 319, 14–16 (2014)CrossRefGoogle Scholar
  71. 71.
    M. Crescimanno, N.J. Dawson, J.H. Andrews, Coherent perfect rotation. Phys. Rev. A 86, 031807 (2012)CrossRefGoogle Scholar
  72. 72.
    J. Zhang, K.F. MacDonald, N.I. Zheludev, Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012)CrossRefGoogle Scholar
  73. 73.
    M. Papaioannou, E. Plum, J. Valente, E.T.F. Rogers, N.I. Zheludev, Two-dimensional control of light with light on metasurfaces. Light Sci. Appl. 5, e16070 (2016)CrossRefGoogle Scholar
  74. 74.
    X. Li, M. Pu, Y. Wang, X. Ma, Y. Li, H. Gao, Z. Zhao, P. Gao, C. Wang, X. Luo, Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials. Adv. Opt. Mater. 4, 659–663 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-fabrication and Micro-engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations