• Xiangang LuoEmail author


Catenary optics is a newly emerging branch in optics and nanophotonics, which focuses on the applications of catenary functions in optical and electromagnetic devices. In a more general sense, it may be called catenary electromagnetics to highlight the electromagnetic nature of light. This book is devoted to the physics and applications of catenary optics and catenary electromagnetics. Section 1.1 gives a brief description of the developing history of catenary optics. Section 1.2 describes typical examples which illustrate the universal relation between catenary and optics. Section 1.3 discusses some common misconceptions related to catenary function. Section 1.4 is an overview of this book.


Catenary electromagnetics Catenary optical fields Catenary dispersion Catenary metasurface 


  1. 1.
  2. 2.
    M. Hirano, M. Aniya, A rational explanation of cross-profile morphology for glacial valleys and of glacial valley development. Earth Surf. Process. Landf. 13, 707–716 (1988)CrossRefGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    D. Gilbert, On the mathematical theory of suspension bridges, with tables for facilitating their construction. Philos. Trans. R. Soc. Lond. 116, 202–218 (1826)CrossRefGoogle Scholar
  9. 9.
    C.R. Calladine, An amateur’s contribution to the design of Telford’s Menai Suspension Bridge: a commentary on Gilbert (1826) ‘On the mathematical theory of suspension bridges’, Philos. Transact. A Math. Phys. Eng. Sci. 373, 20140346 (2015)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    R.K. Temple, The Genius of China: 3,000 Years of Science, Discovery, and Invention (Inner Traditions Rochester, VT, 2007)Google Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    Q. Chen, X. Yao, L. Xu, Q. Li, Y. Song, L. Jiang, Capillary force restoration of droplet on superhydrophobic ribbed nano-needles arrays. Soft Matter 6, 2470–2474 (2010)CrossRefGoogle Scholar
  16. 16.
    P.A. Kralchevsky, K. Nagayama, Capillary bridges and capillary-bridge forces, in Particles at Fluid Interfaces and Membranes (Elsevier, 2001), pp. 469–502Google Scholar
  17. 17.
  18. 18.
  19. 19.
    G.A. Rottigni, Concentration of the sun’s rays using catenary curves. Appl. Opt. 17, 969–974 (1978)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    D.J. Coleman, R.H. Silverman, H. Lloyd, IV.D. Physiology of Accommodation and Role of the Vitreous Body, in Vitreous: In Health and Disease, ed. by J. Sebag, (Springer New York, 2014), pp. 495–507Google Scholar
  22. 22.
    J. Evans, M. Rosenquist, “F = ma” optics. Am. J. Phys. 54, 876–883 (1986)CrossRefGoogle Scholar
  23. 23.
    D.J. Coleman, On the hydraulic suspension theory of accommodation. Trans. Am. Ophthalmol. Soc. 84, 846 (1986)Google Scholar
  24. 24.
    R. Nan, G. Ren, W. Zhu, Y. Lu, Adaptive cable-mesh reflector for the FAST. Acta Astron. Sin. 44, 13–18 (2003)Google Scholar
  25. 25.
    R. Nan, Five hundred meter aperture spherical radio telescope (FAST). Sci. China, Ser. G 49, 129–148 (2006)CrossRefGoogle Scholar
  26. 26.
    H. Fang, M. Lou, L.-M. Hsia, P. Leug, Catenary systems for membrane structures, in 19th AIAA Applied Aerodynamics Conference. Fluid Dynamics and Co-Located Conferences (American Institute of Aeronautics and Astronautics, 2001)Google Scholar
  27. 27.
    H.G. Kosmahl, G.M. Branch, Generalized representation of electric fields in interaction gaps of klystrons and traveling-wave tubes. IEEE Trans. Electron Devices 20, 621–629 (1973)CrossRefGoogle Scholar
  28. 28.
    X. Luo and T. Ishihara, Sub 100 nm lithography based on plasmon polariton resonance, in 2003 International Microprocesses and Nanotechnology Conference (IEEE, 2003), pp. 138–139Google Scholar
  29. 29.
    K. Tanaka, M. Tanaka, Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82, 1158–1160 (2003)CrossRefGoogle Scholar
  30. 30.
    X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)CrossRefGoogle Scholar
  31. 31.
    X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)CrossRefGoogle Scholar
  32. 32.
    C. Wang, C. Du, X. Luo, Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film. Phys. Rev. B 74, 245403 (2006)CrossRefGoogle Scholar
  33. 33.
    B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)CrossRefGoogle Scholar
  34. 34.
    J. Khurgin, W.-Y. Tsai, D.P. Tsai, G. Sun, Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics 4, 2871–2880 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  36. 36.
    M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)CrossRefGoogle Scholar
  37. 37.
    R. Chikkaraddy, B. de Nijs, F. Benz, S.J. Barrow, O.A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J.J. Baumberg, Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Luo, M. Pu, X. Li, X. Ma, Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl. 6, e16276 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Pancharatnam, Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. 44, 247–262 (1956)CrossRefGoogle Scholar
  41. 41.
    M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 392, 45–57 (1984)CrossRefGoogle Scholar
  42. 42.
    K.Y. Bliokh, D. Smirnova, F. Nori, Quantum spin Hall effect of light. Science 348, 1448–1451 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Zhao, M.A. Belkin, A. Alù, Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012)CrossRefGoogle Scholar
  44. 44.
    J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, M. Wegener, A helical metamaterial for broadband circular polarization conversion. Adv. Opt. Mater. 3, 1411–1417 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo, High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater. 6, 1800592 (2018)CrossRefGoogle Scholar
  47. 47.
    M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018)CrossRefGoogle Scholar
  48. 48.
    X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as highly efficient and compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)CrossRefGoogle Scholar
  49. 49.
    Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, X. Luo, Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci. Rep. 5, 17733 (2015)CrossRefGoogle Scholar
  50. 50.
    X. Li, M. Pu, Y. Wang, X. Ma, Y. Li, H. Gao, Z. Zhao, P. Gao, C. Wang, X. Luo, Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials. Adv. Opt. Mater. 4, 659–663 (2016)CrossRefGoogle Scholar
  51. 51.
    A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013)CrossRefGoogle Scholar
  52. 52.
    C. Wang, P. Gao, X. Tao, Z. Zhao, M. Pu, P. Chen, X. Luo, Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl. Phys. Lett. 103, 031911 (2013)CrossRefGoogle Scholar
  53. 53.
    D. de Klerk, J. Murugan, and J.-P. Uzan, The catenary revisited: from Newtonian strings to superstrings, arXiv:1103.0788 (2011)
  54. 54.
  55. 55.
    Z. Wang, An explanation of mirage with linearly varying index of refraction. Coll. Phys. 20, 24–27 (2001)Google Scholar
  56. 56.
    Z. Zhao, M. Pu, Y. Wang, X. Luo, The generalized laws of refraction and reflection. Opto-Electron. Eng. 44, 129–139 (2017)Google Scholar
  57. 57.
    A. Kalvach, Z. Szabó, Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B 33, A66–A71 (2016)CrossRefGoogle Scholar
  58. 58.
    M. Pu, X. Li, Y. Guo, X. Ma, X. Luo, Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017)CrossRefGoogle Scholar
  59. 59.
    W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, J. Tian, Metasurface enabled wide-angle Fourier lens. Adv. Mater. 30, 1706368 (2018)CrossRefGoogle Scholar
  60. 60.
    A. Arbabi, E. Arbabi, S.M. Kamali, Y. Horie, S. Han, A. Faraon, Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016)CrossRefGoogle Scholar
  61. 61.
    B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017)CrossRefGoogle Scholar
  62. 62.
    M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, X. Luo, Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide. Opt. Express 18, 21030–21037 (2010)CrossRefGoogle Scholar
  63. 63.
    E. Merzbacher, The early history of quantum tunneling. Phys. Today 55, 44–50 (2002)CrossRefGoogle Scholar
  64. 64.
    M. Razavy, Quantum Theory of Tunneling, 2nd ed. (World Scientific, 2014)Google Scholar
  65. 65.
    J.L. McFarland, Catenary geodesic lens antenna, U.S. patent 3,383,691 (1968)Google Scholar
  66. 66.
    J.S. Ajioka, J.L. McFarland, Beam-forming feeds, in Antenna Handbook (Chapman & Hall, 1993), Vol. IIIGoogle Scholar
  67. 67.
    K.H. Teo, D. Huang, J. Zhang, B. Yerazunis, B. Wang, Wireless energy transfer with negative material, U.S. patent US 20110133566 A1 (2011)Google Scholar
  68. 68.
    S. Assawaworrarit, X. Yu, S. Fan, Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387 (2017)CrossRefGoogle Scholar
  69. 69.
    B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101 (2011)CrossRefGoogle Scholar
  70. 70.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984)Google Scholar
  71. 71.
    B. Averill, P. Eldredge, Principles of General Chemistry (2012)Google Scholar
  72. 72.
    B. Zhao, J. Yang, New effects in an ultracompact Young’s double nanoslit with plasmon hybridization. New J. Phys. 15, 073024 (2013)CrossRefGoogle Scholar
  73. 73.
    X. Ma, Y. Guo, M. Pu, X. Li, X. Luo, Refined model for plasmon ruler based on catenary shaped optical fields. Plasmonics (2019)Google Scholar
  74. 74.
  75. 75.
  76. 76.
  77. 77.
    S.H. Pepe, Polynomial and catenary curve fits to human dental arches. J. Dent. Res. 54, 1124 (1975)CrossRefGoogle Scholar
  78. 78.
    Y. Guo, M. Pu, X. Li, X. Ma, P. Gao, Y. Wang, X. Luo, Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array. J. Phys.: Condens. Matter 30, 144003 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-fabrication and Micro-engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations