Synthesis of Poly(aromatic)s I: Oxidoreductase as Catalyst

  • Hiroshi UyamaEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


This chapter reviews enzymatic oxidative polymerization to aromatic polymers. Phenols, anilines, and thiophenes are subjected to the enzymatic oxidative polymerization. Peroxidases with the use of hydrogen peroxide as oxidant efficiently induce the oxidative coupling of phenols to phenolic polymers, most of which are hardly obtained by conventional chemical catalysts. The enzymatic oxidative polymerizations have merits of using nontoxic catalysts and mild reaction conditions, and the specific enzyme catalysis provides regio- and chemoselective polymerizations to produce functional materials. Laccase and peroxidase are useful for production of cross-linked polymers such as artificial urushi and biopolymer hydrogel.


Aniline Enzymatic polymerization Laccase Oxidative polymerization Peroxidase Phenol 


  1. 1.
    Pennerhahn JE, Eble KS, McMurry TJ et al (1986) Structural characterization of horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe=O ligation in compounds I and II. J Amer Chem Soc 108:7819–7825CrossRefGoogle Scholar
  2. 2.
    Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci 28:1015–1048CrossRefGoogle Scholar
  3. 3.
    Higashimura H, Kobayashi S (2004) Oxidative polymerization. In: Kroschiwitz JI (ed) Encyclopedia of polymer science and technology, vol 10, 3rd edn. Wiley, New York, pp 740–746Google Scholar
  4. 4.
    Reihmann M, Ritter H (2006) Synthesis of phenol polymers using peroxidases. Adv Polym Sci 194:1–49CrossRefGoogle Scholar
  5. 5.
    Uyama H, Kobayashi S (2006) Enzymatic synthesis and properties of polymers from polyphenols. Adv Polym Sci 194:51–67CrossRefGoogle Scholar
  6. 6.
    Hay AS (1998) Polymerization by oxidative coupling: discovery and commercialization of PPO® and Noryl® resins. J Polym Sci Part A: Polym Chem 36:505–517CrossRefGoogle Scholar
  7. 7.
    Dordick JS, Marletta MA, Klibanov AM (1987) Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnol Bioeng 30:31–36PubMedCrossRefGoogle Scholar
  8. 8.
    Uyama H, Kurioka H, Kaneko I et al (1994) Synthesis of a new family of phenol resin by enzymatic oxidative polymerization. Chem Lett 23:423–426CrossRefGoogle Scholar
  9. 9.
    Uyama H, Kurioka H, Sugihara J et al (1996) Enzymatic synthesis and thermal properties of a new class of polyphenol. Bull Chem Soc Jpn 69:189–193CrossRefGoogle Scholar
  10. 10.
    Oguchi T, Tawaki S, Uyama H et al (1999) Soluble polyphenol. Macromol Rapid Commun 20:401–403CrossRefGoogle Scholar
  11. 11.
    Oguchi T, Tawaki S, Uyama H et al (2000) Enzymatic synthesis of soluble polyphenol. Bull Chem Soc Jpn 73:1389–1396CrossRefGoogle Scholar
  12. 12.
    Mita N, Tawaki S, Uyama H et al (2001) Molecular weight control of polyphenols by enzymatic copolymerization of phenols. Polym J 33:374–376CrossRefGoogle Scholar
  13. 13.
    Mita N, Tawaki S, Uyama H et al (2002) Enzymatic oxidative polymerization of phenol in an aqueous solution in the presence of a catalytic amount of cyclodextrin. Macromol Biosci 2:127–130CrossRefGoogle Scholar
  14. 14.
    Kim YJ, Uyama H, Kobayashi S (2003) Regioselective synthesis of poly(phenylene) as a complex with poly(ethylene glycol) by template polymerization of phenol in water. Macromolecules 36:5058–5060CrossRefGoogle Scholar
  15. 15.
    Kim YJ, Uyama H, Kobayashi S (2004) Peroxidase-catalyzed oxidative polymerization of phenol with a nonionic polymer surfactant template in water. Macromol Biosci 4:497–502PubMedCrossRefGoogle Scholar
  16. 16.
    Kim YJ, Shibata K, Uyama H et al (2008) Synthesis of ultrahigh molecular weight phenolic polymers by enzymatic polymerization in the presence of amphiphilic triblock copolymer in water. Polymer 49:4791–4795CrossRefGoogle Scholar
  17. 17.
    Uyama H, Kurioka H, Kobayashi S (1995) Preparation of polyphenol particles by dispersion polymerization using enzyme as catalyst. Chem Lett 9:795–796CrossRefGoogle Scholar
  18. 18.
    Kurioka H, Uyama H, Kobayashi S (1998) Peroxidase-catalyzed dispersion polymerization of phenol derivatives. Polym J 30:526–529CrossRefGoogle Scholar
  19. 19.
    Nie G, Zhang L, Cui Y (2012) Synthesis of polyphenol microsphere-supported palladium complex and evaluation of its catalytic performance for heck reaction. Appl Organomet Chem 26:635–640CrossRefGoogle Scholar
  20. 20.
    Zhang L, Zhao W, Chen H et al (2013) Enzymatic synthesis of phenol polymer and its functionalization. J Mol Catal B Enzym 87:30–36CrossRefGoogle Scholar
  21. 21.
    Uyama H, Kurioka H, Kobayashi S (1997) Novel bienzymatic catalysis system for oxidative polymerization of phenols. Polym J 29:190–192CrossRefGoogle Scholar
  22. 22.
    Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17:57–68CrossRefGoogle Scholar
  23. 23.
    Peng Y, Liu HW, Zhang XY et al (2009) CNT templated regioselective enzymatic polymerization of phenol in water and modification of surface of MWNT thereby. J Polym Sci Part A: Polym Chem 47:1627–1635CrossRefGoogle Scholar
  24. 24.
    Cui Y, Hu A, Lu Z et al (2010) Synthesis of water-soluble polyphenol-graft-poly(ethylene oxide) copolymers via enzymatic polymerization and anionic polymerization. Polym Int 59:676–679CrossRefGoogle Scholar
  25. 25.
    Kurioka H, Komatsu I, Uyama H et al (1994) Enzymatic oxidative polymerization of alkylphenols. Macromol Rapid Commun 15:507–510CrossRefGoogle Scholar
  26. 26.
    Uyama H, Kurioka H, Sugihara J et al (1997) Oxidative polymerization of p-alkylphenols catalyzed by horseradish peroxidase. J Polym Sci Part A: Polym Chem 35:1453–1459CrossRefGoogle Scholar
  27. 27.
    Uyama H, Kurioka H, Sugihara J et al (1995) Peroxidase-catalyzed oxidative polymerization of cresols to a new family of polyphenols. Bull Chem Soc Jpn 68:3209–3214CrossRefGoogle Scholar
  28. 28.
    Ayyagari MS, Marx KA, Tripathy SK et al (1995) Controlled free-radical polymerization of phenol derivatives by enzyme-catalyzed reactions in organic-solvents. Macromolecules 28:5192–5197CrossRefGoogle Scholar
  29. 29.
    Sahoo SK, Liu W, Samuelson LA et al (2002) Biocatalytic polymerization of p-cresol: an in-situ NMR approach to understand the coupling mechanism. Macromolecules 35:9990–9998CrossRefGoogle Scholar
  30. 30.
    Wu XD, Liu W, Nagarajan R et al (2004) Role of temperature in suppression of the formation of Pummerer’s type ketone in enzymatic polymerization of 4-propylphenol: an in-situ variable temperature H-1 NMR study. Macromolecules 37:2322–2324CrossRefGoogle Scholar
  31. 31.
    Mita N, Tawaki S, Uyama H et al (2002) Structural control in enzymatic oxidative polymerization of phenols with varying the solvent and substituent nature. Chem Lett 31:402–403CrossRefGoogle Scholar
  32. 32.
    Mita N, Maruichi N, Tonami H et al (2003) Enzymatic oxidative polymerization of p-t-butylphenol and characterization of the product polymer. Bull Chem Soc Jpn 76:375–379CrossRefGoogle Scholar
  33. 33.
    Mita N, Tawaki S, Uyama H et al (2004) Precise structure control of enzymatically synthesized polyphenols. Bull Chem Soc Jpn 77:1523–1527CrossRefGoogle Scholar
  34. 34.
    Wang P, Martin BD, Parida S et al (1995) Multienzymic synthesis of poly(hydroquinone) for use as a redox polymer. J Amer Chem Soc 117:12885–12886CrossRefGoogle Scholar
  35. 35.
    Tonami H, Uyama H, Kobayashi S et al (1999) Chemoenzymatic synthesis of a poly(hydroquinone). Macromol Chem Phys 200:1998–2002CrossRefGoogle Scholar
  36. 36.
    Izawa H, Miyazaki Y, Ifuku S et al (2016) Fully biobased oligophenolic nanoparticle prepared by horseradish peroxidase-catalyzed polymerization. Chem Lett 45:631–633CrossRefGoogle Scholar
  37. 37.
    Fukuoka T, Tachibana Y, Tonami H et al (2002) Enzymatic polymerization of tyrosine derivatives. Peroxidase- and protease-catalyzed synthesis of poly(tyrosine)s with different structures. Biomacromolecules 3:768–774PubMedCrossRefGoogle Scholar
  38. 38.
    Uyama H, Lohavisavapanich C, Ikeda R et al (1998) Chemoselective polymerization of a phenol derivative having a methacryl group by peroxidase catalyst. Macromolecules 31:554–556CrossRefGoogle Scholar
  39. 39.
    Reihmann MH, Ritter H (2000) Oxidative oligomerization of cyclodextrin-complexed bifunctional phenols catalyzed by horseradish peroxidase in water. Macromol Chem Phys 201:798–804CrossRefGoogle Scholar
  40. 40.
    Reihmann MH, Ritter H (2000) Enzymatically catalyzed synthesis of photocrosslinkable oligophenols. Macromol Chem Phys 201:1593–1597CrossRefGoogle Scholar
  41. 41.
    Pang YJ, Ritter H, Tabatabai M (2003) Cyclodextrins in polymer chemistry: enzymatically catalyzed oxidative polymerization of para-functionalized phenol derivatives in aqueous medium by use of horseradish peroxidase. Macromolecules 36:7090–7093CrossRefGoogle Scholar
  42. 42.
    Tonami H, Uyama H, Kobayashi S et al (2000) Chemoselective oxidative polymerization of m-ethynylphenol by peroxidase catalyst to a new reactive polyphenol. Biomacromolecules 1:149–151PubMedCrossRefGoogle Scholar
  43. 43.
    Kobayashi S, Uyama H, Ushiwata T et al (1998) Enzymatic oxidative polymerization of bisphenol-A to a new class of soluble polyphenol. Macromol Chem Phys 199:777–782CrossRefGoogle Scholar
  44. 44.
    Kim YH, An ES, Park SY et al (2007) Polymerization of bisphenol a using Coprinus Cinereus Peroxidase (CiP) and its application as a photoresist resin. J Mol Catal B Enzym 44:149–154CrossRefGoogle Scholar
  45. 45.
    Fukuoka T, Tonami H, Maruichi N et al (2000) Peroxidase-catalyzed oxidative polymerization of 4,4’-dihydroxydiphenyl ether. Formation of α,ω-hydroxyoligo(1,4-phenylene oxide) through an unusual reaction pathway. Macromolecules 33:9152–9155CrossRefGoogle Scholar
  46. 46.
    Topal Y, Tapan S, Gokturk E et al (2017) Horseradish peroxidase-catalyzed polymerization of ortho-imino-phenol: synthesis, characterization, thermal stability and electrochemical properties. J Saudi Chem Soc 21:731–740CrossRefGoogle Scholar
  47. 47.
    Kocak A, Kumbul A, Gokturk E et al (2015) Synthesis and characterization of imine-functionalized polyphenol via enzymatic oxidative polycondensation of a bisphenol derivative. Polym Bull 73:163–177CrossRefGoogle Scholar
  48. 48.
    Isci I, Gokturk E, Turac E et al (2016) Chemoenzymatic polymerization of hydrazone functionalized phenol. Polym Sci Ser B 58:411–420CrossRefGoogle Scholar
  49. 49.
    Kommareddi NS, Tata M, Karayigitoglu C et al (1995) Enzymatic polymerizations using surfactant microstructures and the preparation of polymer-ferrite composites. Appl Biochem Biotechnol 51(2):241–252CrossRefGoogle Scholar
  50. 50.
    Xu P, Kumar J, Samuelson L et al (2002) Monitoring the enzymatic polymerization of 4-phenylphenol by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a novel approach. Biomacromolecules 3:889–893PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang L, Zhao W, Ma Z et al (2012) Enzymatic polymerization of phenol catalyzed by horseradish peroxidase in aqueous micelle system. Eur Polym J 48:580–585CrossRefGoogle Scholar
  52. 52.
    Zhang L, Zhang Y, Xue Y et al (2013) Enzymatic synthesis of soluble phenol polymer in water using anionic surfactant as additive. Polym Int 62:1277–1282CrossRefGoogle Scholar
  53. 53.
    Gao Y, Jiang F, Zhang L et al (2015) Enzymatic synthesis of polyguaiacol and its thermal antioxidant behavior in polypropylene. Polym Bull 73:1343–1359CrossRefGoogle Scholar
  54. 54.
    Sgalla S, Fabrizi G, Cacchi S et al (2007) Horseradish peroxidase in ionic liquids – reactions with water insoluble phenolic substrates. J Mol Catal B Enzym 44:144–148CrossRefGoogle Scholar
  55. 55.
    Zaragoza-Gasca P, Villamizar-Galvez OJ, Garcia-Arrazola R et al (2010) Use of ionic liquid for the enzyme-catalyzed polymerization of phenols. Polym Adv Technol 21:454–456Google Scholar
  56. 56.
    Angerer PS, Studer A, Witholt B et al (2005) Oxidative polymerization of a substituted phenol with ion-paired horseradish peroxidase in an organic solvent. Macromolecules 38:6248–6250CrossRefGoogle Scholar
  57. 57.
    Zheng K, Duan H, Zhang L et al (2013) Synthesis of poly(4-methoxyphenol) by enzyme-catalyzed polymerization and evaluation of its antioxidant activity. New J Chem 37:4185–4191CrossRefGoogle Scholar
  58. 58.
    Robert JP, Uyama H, Kobayashi S et al (2003) First diazosulfonate homopolymer by enzymatic polymerization. Macromol Rapid Commun 24:185–189CrossRefGoogle Scholar
  59. 59.
    Duan H, Zheng K, Zhang L et al (2014) Synthesis of poly(4-aminophenol) by horseradish peroxidase and the evaluation of its adsorptivity for silver ions. J Appl Polym Sci 131:40367/40361–40367/40366Google Scholar
  60. 60.
    Uyama H (2018) Functional polymers from renewable plant oils. Polym J 50:1003-1011Google Scholar
  61. 61.
    Tsujimoto T, Ikeda R, Uyama H et al (2001) Crosslinkable polyphenols from Urushiol analogues. Macromol Chem Phys 202:3420–3425CrossRefGoogle Scholar
  62. 62.
    Mondrzyk A, Mondrzik B, Gingter S et al (2012) New enzymatically polymerized copolymers from 4-tert-butylphenol and 4-ferrocenylphenol and their modification and inclusion complexes with β-cyclodextrin. Beilstein J Org Chem 8:2118–2123. No. 2238PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cui Y, Han X, Ding Y et al (2010) Enzymatic synthesis of polyphenols with longer conjugation lengths. Polym Bull (Heidelberg, Ger) 64:647–656Google Scholar
  64. 64.
    Turac E, Sahmetlioglu E (2010) Oxidative polymerization of 4-[(4-Phenylazo-phenyimino)-methyl]-phenol catalyzed by horseradish peroxidase. Synth Met 160:169–172CrossRefGoogle Scholar
  65. 65.
    Ghan R, Shutava T, Patel A et al (2004) Enzyme-catalyzed polymerization of phenols within polyelectrolyte microcapsules. Macromolecules 37:4519–4524CrossRefGoogle Scholar
  66. 66.
    Yoshimura Y, Khunathai K, Nozoe A et al (2012) Precious metal recovery using poly(tyramine) prepared by radical polymerization with horseradish peroxidase. J Chem Eng Jpn 45:178–181CrossRefGoogle Scholar
  67. 67.
    Shutava T, Zheng ZG, John V et al (2004) Microcapsule modification with peroxidase-catalyzed phenol polymerization. Biomacromolecules 5:914–921PubMedCrossRefGoogle Scholar
  68. 68.
    Tonami H, Uyama H, Kobayashi S et al (1999) Peroxidase-catalyzed oxidative polymerization of m-substituted phenol derivatives. Macromol Chem Phys 200:2365–2371CrossRefGoogle Scholar
  69. 69.
    Kadota J, Fukuoka T, Uyama H et al (2004) New positive-type photoresists based on enzymatically synthesized polyphenols. Macromol Rapid Commun 25:441–444CrossRefGoogle Scholar
  70. 70.
    Tonami H, Uyama H, Kobayashi S et al (2002) Enzymatic polymerization of m-substituted phenols in the presence of 2,6-Di-O-methyl-β-cyclodextrin in water. E-Polymers 2:1–7CrossRefGoogle Scholar
  71. 71.
    Kim YH, An ES, Song BK (2009) Co-polymerization of MTPC (methylene tri p-cresol) and m-cresol using CiP (Coprinus Cinereus Peroxidase) to improve the dissolution characteristics of the enzyme-catalyzed polymer. J Mol Catal B Enzym 56:227–230CrossRefGoogle Scholar
  72. 72.
    Kobayashi S (1999) Enzymatic polymerization: a new method of polymer synthesis. J Polym Sci Part A: Polym Chem 37:3041–3056CrossRefGoogle Scholar
  73. 73.
    Kobayashi S, Uyama H, Ohmae M (2001) Enzymatic polymerization for precision polymer synthesis. Bull Chem Soc Jpn 74:613–635CrossRefGoogle Scholar
  74. 74.
    Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:3793–3818PubMedCrossRefGoogle Scholar
  75. 75.
    Won K, Kim YH, An ES et al (2004) Horseradish peroxidase-catalyzed polymerization of cardanol in the presence of redox mediators. Biomacromolecules 5:1–4PubMedCrossRefGoogle Scholar
  76. 76.
    Kim YH, Won KH, Kwon JM et al (2005) Synthesis of polycardanol from a renewable resource using a fungal peroxidase from Coprinus cinereus. J Mol Catal B Enzym 34:33–38CrossRefGoogle Scholar
  77. 77.
    Park SY, Kim YH, Won K et al (2009) Enzymatic synthesis and curing of polycardol from renewable resources. J Mol Catal B Enzym 57:312–316CrossRefGoogle Scholar
  78. 78.
    Zhou Q, Cho D, Song BK et al (2010) Curing behavior of polycardanol by MEKP and cobalt naphthenate using differential scanning calorimetry. J Therm Anal Calorim 99:277–284CrossRefGoogle Scholar
  79. 79.
    Chelikani R, Kim YH, Yoon D-Y et al (2009) Enzymatic polymerization of natural anacardic acid and antibiofouling effects of polyanacardic acid coatings. Appl Biochem Biotechnol 157:263–277PubMedCrossRefGoogle Scholar
  80. 80.
    Bilici A, Kaya I, Yildirim M et al (2010) Enzymatic polymerization of hydroxy-functionalized carbazole monomer. J Mol Catal B Enzym 64:89–95CrossRefGoogle Scholar
  81. 81.
    Antoniotti S, Santhanam L, Ahuja D et al (2004) Structural diversity of peroxidase-catalyzed oxidation products of o-methoxyphenois. Org Lett 6:1975–1978PubMedCrossRefGoogle Scholar
  82. 82.
    Tonami H, Uyama H, Nagahata R et al (2004) Guaiacol oxidation products in the enzyme-activity assay reaction by horseradish peroxidase catalysis. Chem Lett 33:796–797CrossRefGoogle Scholar
  83. 83.
    Nazari K, Adhami F, Najjar-Safari A et al (2011) Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants. Biochem Biophys Res Commun 410:901–903PubMedCrossRefGoogle Scholar
  84. 84.
    Cohen-Yaniv V, Dosoretz CG (2009) Fate of horseradish peroxidase during oxidation of monobrominated phenols. J Chem Technol Biotechnol 84:1559–1566CrossRefGoogle Scholar
  85. 85.
    Feng W, Taylor KE, Biswas N et al (2013) Soybean peroxidase trapped in product precipitate during phenol polymerization retains activity and may be recycled. J Chem Technol Biotechnol 88:1429–1435CrossRefGoogle Scholar
  86. 86.
    Ikeda R, Sugihara J, Uyama H et al (1996) Enzymatic oxidative polymerization of 2,6-dimethylphenol. Macromolecules 29:8702–8705CrossRefGoogle Scholar
  87. 87.
    Nanayakkara S, Zhao Z, Patti AF et al (2014) Immobilized horseradish peroxidase (I-HRP) as biocatalyst for oxidative polymerization of 2,6-dimethylphenol. ACS Sustain Chem Eng 2:1947–1950CrossRefGoogle Scholar
  88. 88.
    Ikeda R, Sugihara J, Uyama H et al (1998) Enzymatic oxidative polymerization of 4-hydroxybenzoic acid derivatives to poly(phenylene oxide)s. Polym Int 47:295–301CrossRefGoogle Scholar
  89. 89.
    Ikeda R, Uyama H, Kobayashi S (1997) Poly(2,6-dihydroxy-1,4-oxyphenylene) – synthesis of a new poly(phenylene oxide) derivative. Polym Bull 38:273–277CrossRefGoogle Scholar
  90. 90.
    Lairez D, Cathala B, Monties B et al (2005) Aggregation during coniferyl alcohol polymerization in pectin solution: a biomimetic approach of the first steps of lignification. Biomacromolecules 6:763–774PubMedCrossRefGoogle Scholar
  91. 91.
    Nakamura R, Matsushita Y, Umemoto K et al (2006) Enzymatic polymerization of coniferyl alcohol in the presence of cyclodextrins. Biomacromolecules 7:1929–1934PubMedCrossRefGoogle Scholar
  92. 92.
    Moon S-J, Kwon M, Choi D et al (2012) In vitro analysis of the monolignol coupling mechanism using dehydrogenative polymerization in the presence of peroxidases and controlled feeding ratios of coniferyl and sinapyl alcohol. Phytochemistry 82:15–21PubMedCrossRefGoogle Scholar
  93. 93.
    Yang D, Chang Y, Wu X et al (2014) Modification of sulfomethylated alkali lignin catalyzed by horseradish peroxidase. RSC Adv 4:53855–53863CrossRefGoogle Scholar
  94. 94.
    Premachandran RS, Banerjee S, Wu XK et al (1996) Enzymatic synthesis of fluorescent naphthol-based polymers. Macromolecules 29:6452–6460CrossRefGoogle Scholar
  95. 95.
    Alva KS, Samuelson L, Kumar J et al (1998) Enzyme-catalyzed polymerization of 8-hydroxyquinoline-5-sulfonate by in situ nuclear magnetic resonance spectroscopy. J Appl Polym Sci 70:1257–1264CrossRefGoogle Scholar
  96. 96.
    Yamaguchi I, Yamamoto T (2004) Enzymatic polymerization to give poly(dihydroxynaphthalene)s and their photoluminescent aluminum complexes. React Funct Polym 61:43–52CrossRefGoogle Scholar
  97. 97.
    Dubey S, Singh D, Misra RA (1998) Enzymatic synthesis and various properties of poly(catechol). Enz Microbial Technol 23:432–437CrossRefGoogle Scholar
  98. 98.
    Xu P, Uyama H, Whitten JE et al (2005) Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. J Amer Chem Soc 127:11745–11753CrossRefGoogle Scholar
  99. 99.
    Bordoni A, Hrelia S, Angeloni C et al (2002) Green tea protection of hypoxia/reoxygenation injury in cultured cardiac cells. J Nutr Biochem 13:103–111PubMedCrossRefGoogle Scholar
  100. 100.
    Nakagawa K, Ninomiya M, Okubo T et al (1999) Tea Catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. J Agric Food Chem 47:3967–3973PubMedCrossRefGoogle Scholar
  101. 101.
    Uyama H (2007) Artificial polymeric flavonoids: synthesis and applications. Macromol Biosci 7:410–422PubMedCrossRefGoogle Scholar
  102. 102.
    Hamada S, Kontani M, Hosono H et al (1996) Peroxidase-catalyzed generation of catechin oligomers that inhibit glucosyltransferase from Streptococcus sobrinus. FEMS Microbiol Lett 143:35–40PubMedCrossRefGoogle Scholar
  103. 103.
    Lopez-Serrano M, Barcelo AR (1997) Kinetic properties of (+)-catechin oxidation by a basic peroxidase isoenzyme from strawberries. J Food Sci 62:676CrossRefGoogle Scholar
  104. 104.
    Lopez-Serrano M, Barcelo AR (2001) Reversed-phase and size-exclusion chromatography as useful tools in the resolution of peroxidase-mediated (+)-catechin oxidation products. J Chromatogr A 919:267–273PubMedCrossRefGoogle Scholar
  105. 105.
    Lopez-Serrano M, Barcelo AR (2002) Comparative study of the products of the peroxidase-catalyzed and the polyphenoloxidase-catalyzed (+)-catechin oxidation. Their possible implications in strawberry (Fragaria X ananassa) browning reactions. J Agric Food Chem 50:1218–1224PubMedCrossRefGoogle Scholar
  106. 106.
    Mejias L, Reihmann MH, Sepulveda-Boza S et al (2002) New polymers from natural phenols using horseradish or soybean peroxidase. Macromol Biosci 2:24–32CrossRefGoogle Scholar
  107. 107.
    Bruno FF, Nagarajan S, Nagarajan R et al (2005) Biocatalytic synthesis of water-soluble oligo(catechins). J Macromol Sci-Pure Appl Chem A42:1547–1554CrossRefGoogle Scholar
  108. 108.
    Kurisawa M, Chung JE, Kim YJ et al (2003) Amplification of antioxidant activity and xanthine oxidase inhibition of catechin by enzymatic polymerization. Biomacromolecules 4:469–471PubMedCrossRefGoogle Scholar
  109. 109.
    Kawakita H, Nakano S, Hamamoto K et al (2010) Copper-ion adsorption and gold-ion reduction by polyphenols prepared by the enzymatic reaction of horseradish peroxidase. J Appl Polym Sci 118:247–252CrossRefGoogle Scholar
  110. 110.
    Huang Z, Fang Y, Luo Q et al (2016) Construction of supramolecular polymer by enzyme-triggered covalent condensation of CB[8]-FGG-based supramonomer. Chem Commun 52:2083–2086CrossRefGoogle Scholar
  111. 111.
    Song Q, Xu J-F, Zhang X (2017) Polymerization of supramonomers: a new way for fabricating supramolecular polymers and materials. J Polym Sci Part A: Polym Chem 55:604–609CrossRefGoogle Scholar
  112. 112.
    Mita N, Tawaki S, Uyama H et al (2003) Laccase-catalyzed oxidative polymerization of phenols. Macromol Biosci 3:253–257CrossRefGoogle Scholar
  113. 113.
    Yalcinkaya Z, Gun S, Sahan T et al (2014) Influence of the medium conditions on enzymatic oxidation of bisphenol A. Can J Chem Eng 92:712–719CrossRefGoogle Scholar
  114. 114.
    Tanaka T, Takahashi M, Hagino H et al (2010) Enzymatic oxidative polymerization of methoxyphenols. Chem Eng Sci 65:569–573CrossRefGoogle Scholar
  115. 115.
    Aktas N, Kibarer G, Tanyolac A (2000) Effects of reaction conditions on laccase-catalyzed α-naphthol polymerization. J Chem Technol Biotechnol 75:840–846CrossRefGoogle Scholar
  116. 116.
    Gitsov I, Wang LL, Vladimirov N et al (2014) “Green” synthesis of unnatural poly(amino acid)s with Zwitterionic character and pH-responsive solution behavior, mediated by linear dendritic laccase complexes. Biomacromolecules 15:4082–4095PubMedCrossRefGoogle Scholar
  117. 117.
    Okusa K, Miyakoshi T, Chen CL (1996) Comparative studies on dehydrogenative polymerization of coniferyl alcohol by laccases and peroxidases. 1. Preliminary results. Holzforschung 50:15–23CrossRefGoogle Scholar
  118. 118.
    Milstein O, Hüttermann A, Fründ R et al (1994) Enzymatic co-polymerization of lignin with low-molecular mass compounds. Appl Microbiol Biotechnol 40:760–767CrossRefGoogle Scholar
  119. 119.
    Madad N, Chebil L, Charbonnel C et al (2013) Enzymatic polymerization of sodium lignosulfonates: effect of catalysts, initial molecular weight, and mediators. Can J Chem-Revue Canadienne De Chimie 91:220–225CrossRefGoogle Scholar
  120. 120.
    López J, Alonso-Omlin EM, Hernández-Alcántara JM et al (2014) Novel photoluminescent material by laccase-mediated polymerization of 4-fluoroguaiacol throughout defluorination. J Mol Catal B Enzym 109:70–75CrossRefGoogle Scholar
  121. 121.
    Yoshida T, Lu R, Han SQ et al (2009) Laccase-catalyzed polymerization of lignocatechol and affinity on proteins of resulting polymers. J Polym Sci Part A: Polym Chem 47:824–832CrossRefGoogle Scholar
  122. 122.
    Garcia-Ubasart J, Vidal T, Torres AL et al (2013) Laccase-mediated coupling of nonpolar chains for the hydrophobization of lignocellulose. Biomacromolecules 14:1637–1644PubMedCrossRefGoogle Scholar
  123. 123.
    Kurisawa M, Chung JE, Uyama H et al (2003) Laccase-catalyzed synthesis and antioxidant property of poly(catechin). Macromol Biosci 3:758–764CrossRefGoogle Scholar
  124. 124.
    Kurisawa M, Chung JE, Uyama H et al (2003) Enzymatic synthesis and antioxidant properties of poly(rutin). Biomacromolecules 4:1394–1399PubMedCrossRefGoogle Scholar
  125. 125.
    Jiménez M, Garcia-Carmona F (1999) Oxidation of the flavonol quercetin by polyphenol oxidase. J Agric Food Chem 47:56–60PubMedCrossRefGoogle Scholar
  126. 126.
    Jeon JK, Lee J, Imm JY (2014) Effects of laccase-catalyzed rutin polymer fraction on adipogenesis inhibition in 3T3-L1 adipocytes. Process Biochem 49:1189–1195CrossRefGoogle Scholar
  127. 127.
    Desentis-Mendoza RM, Hernandez-Sanchez H, Moreno A et al (2006) Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from Ustilago maydis. Biomacromolecules 7:1845–1854PubMedCrossRefGoogle Scholar
  128. 128.
    Yoshida H (1883) LXIII. – chemistry of lacquer (Urushi). Part I. communication from the Chemical Society of Tokio. J Chem Soc Trans 43:472–486CrossRefGoogle Scholar
  129. 129.
    Bertrand G (1894) Sur le Latex de L’abre à Laque. Compt Rend 118:1213–1218Google Scholar
  130. 130.
    Majima R (1909) Über den Hauptbestandteil des Japanlacks. (I. Mitteilung.) Über Urushiol und Urushioldimethyläther. Ber Dtsch Chem Ges 42:1418–1423CrossRefGoogle Scholar
  131. 131.
    Majima R (1922) Über den Hauptbestandteil des Japan-Lacks, IX. Mitteilung: Chemische Untersuchung der verschiedenen natürlichen Lackarten, die dem Japan-Lack nahe verwandt sind. Ber Dtsch Chem Ges (A and B Series) 55:191–214CrossRefGoogle Scholar
  132. 132.
    Symes WF, Dawson CR (1954) Poison ivy “Urushiol”. J Am Chem Soc 76:2959–2963CrossRefGoogle Scholar
  133. 133.
    Loev B, Dawson CR (1956) On the geometrical configuration of the olefinic components of poison ivy Urushiol. The synthesis of a model compound. J Am Chem Soc 78:1180–1183CrossRefGoogle Scholar
  134. 134.
    Rogue BV (1976) A history of Japanese lacquer work. University of Toronto Press, TorontoGoogle Scholar
  135. 135.
    Vogl O (2000) Oriental lacquer, poison ivy, and drying oils. J Polym Sci Part A: Polym Chem 38:4327–4335CrossRefGoogle Scholar
  136. 136.
    Kumanodani J (1996) Oriental lacquer. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC Press, Inc, Boca Raton, pp 4835–4842Google Scholar
  137. 137.
    Kobayashi S, Uyama H, Ikeda R (2001) Concepts article: artificial Urushi. Chem-A Eur J 7:4754–4760CrossRefGoogle Scholar
  138. 138.
    Kobayashi S, Ikeda R, Oyabu H et al (2000) Artificial Urushi: design, synthesis, and enzymatic curing of new Urushiol analogues. Chem Lett 10:1214–1215CrossRefGoogle Scholar
  139. 139.
    Ikeda R, Tsujimoto T, Tanaka H et al (2000) Man-made Urushi – preparation of crosslinked polymeric films from renewable resources via air-oxidation processes. Proc Jpn Acad Ser B-Phys Biol Sci 76:155–160CrossRefGoogle Scholar
  140. 140.
    Ikeda R, Tanaka H, Oyabu H et al (2001) Preparation of artificial Urushi via an environmentally benign process. Bull Chem Soc Jpn 74:1067–1073CrossRefGoogle Scholar
  141. 141.
    Tsujimoto T, Ando N, Oyabu H et al (2007) Laccase-catalyzed curing of natural phenolic lipids and product properties. J Macromol Sci-Pure Appl Chem A44:1055–1060CrossRefGoogle Scholar
  142. 142.
    Zaidi KU, Ali AS, SA A et al (2014) Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int 2014:854687PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wang L, Kobatake E, Ikariyama Y et al (1993) Regioselective oxidative polymerization of 1,5-dihydroxynaphthalene catalyzed by bilirubin oxidase in a water–organic solvent mixed solution. J Polym Sci Part A: Polym Chem 31:2855–2861CrossRefGoogle Scholar
  144. 144.
    Xu P, Singh A, Kaplan DL (2006) Enzymatic catalysis in the synthesis of polyanilines and derivatives of polyanilines. Enzyme Catal Synth Polym 194:69–94CrossRefGoogle Scholar
  145. 145.
    Aizawa M, Wang LL, Shinohara H et al (1990) Enzymatic-synthesis of polyaniline film using a copper-containing oxidoreductase – bilirubin oxidase. J Biotechnol 14:301–310PubMedCrossRefGoogle Scholar
  146. 146.
    Samuelson LA, Anagnostopoulos A, Alva KS et al (1998) Biologically derived conducting and water soluble polyaniline. Macromolecules 31:4376–4378CrossRefGoogle Scholar
  147. 147.
    Roy S, Fortier JM, Nagarajan R et al (2002) Blomimetic synthesis of a water soluble conducting molecular complex of polyaniline and lignosulfonate. Biomacromolecules 3:937–941PubMedCrossRefGoogle Scholar
  148. 148.
    Liu W, Kumar J, Tripathy S et al (1999) Enzymatically synthesized conducting polyaniline. J Amer Chem Soc 121:71–78CrossRefGoogle Scholar
  149. 149.
    Guo ZW, Ruegger H, Kissner R et al (2009) Vesicles as soft templates for the enzymatic polymerization of aniline. Langmuir 25:11390–11405PubMedCrossRefGoogle Scholar
  150. 150.
    Streltsov AV, Shumakovich GP, Morozova OV et al (2008) Micellar laccase-catalyzed synthesis of electroconductive polyaniline. Appl Biotechnol Microbiol 44:264–270Google Scholar
  151. 151.
    Kausaite A, Ramanaviciene A, Ramanavicius A (2009) Polyaniline synthesis catalysed by glucose oxidase. Polymer 50:1846–1851CrossRefGoogle Scholar
  152. 152.
    Rumbau V, Marcilla R, Ochoteco E et al (2006) Ionic liquid immobilized enzyme for biocatalytic synthesis of conducting polyaniline. Macromolecules 39:8547–8549CrossRefGoogle Scholar
  153. 153.
    Sahoo SK, Nagarajan R, Samuelson L et al (2001) Enzymatically synthesized polyaniline in the presence of a template poly(vinylphosphonic acid): a solid state NMR study. J Macromol Sci-Pure Appl Chem 38:1315–1328CrossRefGoogle Scholar
  154. 154.
    Alva KS, Kumar J, Marx KA et al (1997) Enzymatic synthesis and characterization of a novel water-soluble polyaniline: poly(2,5-diaminobenzenesulfonate). Macromolecules 30:4024–4029CrossRefGoogle Scholar
  155. 155.
    Liu W, Cholli AL, Nagarajan R et al (1999) The role of template in the enzymatic synthesis of conducting polyaniline. J Amer Chem Soc 121:11345–11355CrossRefGoogle Scholar
  156. 156.
    Thiyagarajan M, Samuelson LA, Kumar J et al (2003) Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites. J Amer Chem Soc 125:11502–11503CrossRefGoogle Scholar
  157. 157.
    Caramyshev AV, Lobachov VM, Selivanov DV et al (2007) Micellar peroxidase-catalyzed synthesis of chiral polyaniline. Biomacromolecules 8:2549–2555PubMedCrossRefGoogle Scholar
  158. 158.
    Huh P, Kim SC, Kim Y et al (2007) Optical and electrochemical detection of saccharides with poly(aniline-co-3-aminobenzeneboronic acid) prepared from enzymatic polymerization. Biomacromolecules 8:3602–3607PubMedCrossRefGoogle Scholar
  159. 159.
    Cruz-Silva R, Arizmendi L, Del-Angel M et al (2007) pH- and thermosensitive polyaniline colloidal particles prepared by enzymatic polymerization. Langmuir 23:8–12PubMedCrossRefGoogle Scholar
  160. 160.
    Streltsov AV, Morozova OV, Arkharova NA et al (2009) Synthesis and characterization of conducting polyaniline prepared by laccase-catalyzed method in sodium dodecylbenzenesulfonate micellar solutions. J Appl Polym Sci 114:928–934CrossRefGoogle Scholar
  161. 161.
    Kobayashi S, Kaneko I, Uyama H (1992) Enzymatic oxidation polymerization of ortho-phenylenediamine. Chem Lett 71:393–394CrossRefGoogle Scholar
  162. 162.
    Cui A, Singh A, Kaplan DL (2002) Enzyme-based molecular imprinting with metals. Biomacromolecules 3:1353–1358PubMedCrossRefGoogle Scholar
  163. 163.
    Miao C, Zhang Y, Yang G et al (2016) Enzymatic oligomerization of p-methoxyphenol and phenylamine providing poly(p-methoxyphenol-phenylamine) with improved antioxidant performance in ester oils. Ind Eng Chem Res 55:12703–12709CrossRefGoogle Scholar
  164. 164.
    Shumakovich G, Kurova V, Vasileva I et al (2012) Laccase-mediated synthesis of conducting polyaniline. J Mol Catal B Enzym 77:105–110CrossRefGoogle Scholar
  165. 165.
    Otrokhov G, Pankratov D, Shumakovich G et al (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochim Acta 123:151–157CrossRefGoogle Scholar
  166. 166.
    Nabid MR, Shamsianpour M, Sedghi R et al (2012) Enzyme-catalyzed synthesis of conducting polyaniline nanocomposites with pure and functionalized carbon nanotubes. Chem Eng Technol 35:1707–1712CrossRefGoogle Scholar
  167. 167.
    Junker K, Kissner R, Rakvin B et al (2014) The use of trametes versicolor laccase for the polymerization of aniline in the presence of vesicles as templates. Enz Microbial Technol 55:72–84CrossRefGoogle Scholar
  168. 168.
    Nabid MR, Asadi S, Sedghi R et al (2013) Chemical and enzymatic polymerization of polyaniline/Ag nanocomposites. Chem Eng Technol 36:1411–1416CrossRefGoogle Scholar
  169. 169.
    Luong ND, Korhonen JT, Soininen AJ et al (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J 49:335–344CrossRefGoogle Scholar
  170. 170.
    Nandi S, Kundu A, Das P et al (2017) Facile synthesis of water soluble, fluorescent DNA-polymer conjugate via enzymatic polymerization for cell imaging. J Nanosci Nanotechnol 17:5168–5174CrossRefGoogle Scholar
  171. 171.
    Carrillo N, Leon-Silva U, Avalos T et al (2012) Enzymatically synthesized polyaniline film deposition studied by simultaneous open circuit potential and electrochemical quartz crystal microbalance measurements. J Colloid Interface Sci 369:103–110PubMedCrossRefGoogle Scholar
  172. 172.
    Roman P, Cruz-Silva R, Vazquez-Duhalt R (2012) Peroxidase-mediated synthesis of water-soluble fully sulfonated polyaniline. Syn Metals 162:794–799CrossRefGoogle Scholar
  173. 173.
    Sheng QL, Wang MZ, Zheng JB (2011) A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene-carbon nanotube hybrid materials. Sens Actuators B-Chem 160:1070–1077CrossRefGoogle Scholar
  174. 174.
    Gong C, Chen J, Song Y et al (2016) A glucose biosensor based on the polymerization of aniline induced by a bio-interphase of glucose oxidase and horseradish peroxidase. Anal Methods 8:1513–1519CrossRefGoogle Scholar
  175. 175.
    Kausaite-Minkstimiene A, Mazeiko V, Ramanaviciene A et al (2010) Enzymatically synthesized polyaniline layer for extension of linear detection region of amperometric glucose biosensor. Biosens Bioelectron 26:790–797PubMedCrossRefGoogle Scholar
  176. 176.
    Rumbau V, Pomposo JA, Eleta A et al (2007) First enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene). Biomacromolecules 8:315–317PubMedCrossRefGoogle Scholar
  177. 177.
    Sikora T, Marcilla R, Mecerreyes D et al (2009) Enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene): a simple enzyme immobilization strategy for recycling and reusing. J Polym Sci Part A: Polym Chem 47:306–309CrossRefGoogle Scholar
  178. 178.
    Zhao Y, Zhu H, Wang X et al (2016) Enzyme-catalyzed synthesis of water-soluble conjugated poly[2-(3-thienyl)-ethoxy-4-butylsulfonate]. Polymers 8:139PubMedCentralCrossRefPubMedGoogle Scholar
  179. 179.
    Krikstolaityte V, Kuliesius J, Ramanaviciene A et al (2014) Enzymatic polymerization of polythiophene by immobilized glucose oxidase. Polymer 55:1613–1620CrossRefGoogle Scholar
  180. 180.
    Hira SM, Payne CK (2013) Protein-mediated synthesis of the conducting polymer PEDOT: PSS. Syn Metals 176:104–107CrossRefGoogle Scholar
  181. 181.
    Sheng QL, Wang J, Zheng JB et al (2010) Ultrasensitive electrical biosensing of syphilis DNA using target-guided formation of polyaniline based on enzyme-catalyzed polymerization. Biosens Bioelectron 25:2071–2077PubMedCrossRefGoogle Scholar
  182. 182.
    Shumakovich G, Streltsov A, Gorshina E et al (2011) Laccase-catalyzed oxidative polymerization of aniline dimer (N-phenyl-1,4-phenylenediamine) in aqueous micellar solution of sodium dodecylbenzenesulfonate. J Mol Catal B Enzym 69:83–88CrossRefGoogle Scholar
  183. 183.
    Junker K, Luginbuhl S, Schuttel M et al (2014) Efficient polymerization of the aniline dimer p-aminodiphenylamine (PADPA) with Trametes versicolor laccase/O2 as catalyst and oxidant and AOT vesicles as templates. ACS Catal 4:3421–3434CrossRefGoogle Scholar
  184. 184.
    Ciric-Marjanovic G, Trchova M, Konyushenko EN et al (2008) Chemical oxidative polymerization of aminodiphenylamines. J Phys Chem B 112:6976–6987PubMedCrossRefGoogle Scholar
  185. 185.
    Dearmitt C, Armes SP (1993) Colloidal dispersions of surfactant-stabilized polypyrrole particles. Langmuir 9:652–654CrossRefGoogle Scholar
  186. 186.
    Song HK, Palmore GTR (2005) Conductive polypyrrole via enzyme catalysis. J Phys Chem B 109:19278–19287PubMedCrossRefGoogle Scholar
  187. 187.
    Junker K, Zandomeneghi G, Schuler LD et al (2015) Enzymatic polymerization of pyrrole with Trametes versicolor laccase and dioxygen in the presence of vesicles formed from AOT (sodium bis-(2-ethylhexyl) sulfosuccinate) as templates. Syn Metals 200:123–134CrossRefGoogle Scholar
  188. 188.
    German N, Popov A, Ramanaviciene A et al (2017) Evaluation of enzymatic formation of polyaniline nanoparticles. Polymer 115:211–216CrossRefGoogle Scholar
  189. 189.
    Chung JE, Kurisawa M, Tachibana Y et al (2003) Enzymatic synthesis and antioxidant property of poly(allylamine)-catechin conjugate. Chem Lett 32:620–621CrossRefGoogle Scholar
  190. 190.
    Ihara N, Schmitz S, Kurisawa M et al (2004) Amplification of inhibitory activity of catechin against disease-related enzymes by conjugation on poly(ε-lysine). Biomacromolecules 5:1633–1636PubMedCrossRefGoogle Scholar
  191. 191.
    Fukuoka T, Uyama H, Kobayashi S (2004) Polymerization of polyfunctional macromolecules: synthesis of a new class of high molecular weight poly(amino acid)s by oxidative coupling of phenol-containing precursor polymers. Biomacromolecules 5:977–983PubMedCrossRefGoogle Scholar
  192. 192.
    Kurisawa M, Chung JE, Yang YY et al (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 34:4312–4314CrossRefGoogle Scholar
  193. 193.
    Raia NR, Partlow BP, McGill M et al (2017) Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131:58–67PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Henke S, Leijten J, Kemna E et al (2016) Enzymatic crosslinking of polymer conjugates is superior over ionic or UV crosslinking for the on-chip production of cell-laden microgels. Macromol Biosci 16:1524–1532PubMedCrossRefGoogle Scholar
  195. 195.
    Ikeda R, Uyama H, Kobayashi S (2001) Laccase-catalyzed curing of vinyl polymers bearing a phenol moiety in the side chain. Polym J 33:540–542CrossRefGoogle Scholar
  196. 196.
    Cannatelli MD, Ragauskas AJ (2017) Laccase-mediated synthesis of lignin-core hyperbranched copolymers. Appl Microbiol Biotechnol 101:6343–6353PubMedCrossRefGoogle Scholar
  197. 197.
    Payne GF, Chaubal MV, Barbari TA (1996) Enzyme-catalysed polymer modification: reaction of phenolic compounds with chitosan films. Polymer 37:4643–4648CrossRefGoogle Scholar
  198. 198.
    Kumar G, Smith PJ, Payne GF (1999) Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions. Biotechnol Bioeng 63:154–165PubMedCrossRefGoogle Scholar
  199. 199.
    Wu LQ, Embree HD, Balgley BM et al (2002) Utilizing renewable resources to create functional polymers: chitosan-based associative thickener. Environ Sci Technol 36:3446–3454PubMedCrossRefGoogle Scholar
  200. 200.
    Chen TH, Vazquez-Duhalt R, Wu CF et al (2001) Combinatorial screening for enzyme-mediated coupling. Tyrosinase-catalyzed coupling to create protein-chitosan conjugates. Biomacromolecules 2:456–462PubMedCrossRefGoogle Scholar
  201. 201.
    Chen TH, Embree HD, Wu LQ et al (2002) In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 64:292–302PubMedCrossRefGoogle Scholar
  202. 202.
    Chen TH, Embree HD, Brown EM et al (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24:2831–2841PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Chen TH, Small DA, Wu LQ et al (2003) Nature-inspired creation of protein-polysaccharide conjugate and its subsequent assembly onto a patterned surface. Langmuir 19:9382–9386CrossRefGoogle Scholar
  204. 204.
    Sampaio S, Taddei P, Monti P et al (2005) Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. J Biotechnol 116:21–33PubMedCrossRefGoogle Scholar
  205. 205.
    Monti P, Freddi G, Sampaio S et al (2005) Structure modifications induced in silk fibroin by enzymatic treatments. A Raman study. J Mol Struct 744:685–690CrossRefGoogle Scholar
  206. 206.
    Freddi G, Anghileri A, Sampaio S et al (2006) Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. J Biotechnol 125:281–294PubMedCrossRefGoogle Scholar
  207. 207.
    Anghileri A, Lantto R, Kruus K et al (2007) Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. J Biotechnol 127:508–519PubMedCrossRefGoogle Scholar
  208. 208.
    Guerra A, Ferraz A, Cotrim AR et al (2000) Polymerization of lignin fragments contained in a model effluent by polyphenoloxidases and horseradish peroxidase/hydrogen peroxide system. Enz Microbial Technol 26:315–323CrossRefGoogle Scholar
  209. 209.
    Demolliens A, Boucher C, Durocher Y et al (2008) Tyrosinase-catalyzed synthesis of a universal coil-chitosan bioconjugate for protein immobilization. Bioconjug Chem 19:1849–1854PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations