Synthesis of Polyesters I: Hydrolase as Catalyst for Polycondensation (Condensation Polymerization)

  • Shiro KobayashiEmail author
  • Hiroshi Uyama
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Synthesis of polyesters via enzymatic polymerization is described comprehensively in up-to-dated review manner, in which the polymerization is of polycondensation type using hydrolases mainly lipase as catalyst. First, characteristics of lipase catalysis are discussed: catalyst nature for green polymer chemistry including the catalysis mechanism, immobilization of lipases, role of surfactants for lipase catalysis, and so forth. Then, the lipase-catalyzed polycondensation synthesis of polyesters is argued according to the types of polymerization reactions: via dehydration of α- and ω-oxyacids and of dicarboxylic acids, via transesterification using carboxylic acid esters, and via ring-opening addition-condensation polymerization using cyclic anhydrides or cyclic esters as a monomer component. Other polymers like polyamides, polyamines, polycarbonates, and sulfur-containing polymers were synthesized by lipase catalyst. These reaction results indicate that lipase catalysts induce various polycondensation reactions to produce a variety of new polyesters. Further, protease which catalyzes primarily the peptide bond cleavage and bond formation catalyzed also the polyester production via polycondensation.


Lipase catalyst Polyester synthesis Polycondensation Dehydration polymerization Transesterification polymerization Ring-opening addition-condensation polymerization Protease catalyst 


  1. 1.
    Kobayashi S, Shoda S, Uyama H (1995) Enzymatic polymerization and oligomerization. Adv Polym Sci 121:1–30CrossRefGoogle Scholar
  2. 2.
    Kobayashi S, Shoda S, Uyama H (1996) Enzymatic polymerization. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC Press Inc, Boca Raton, pp 2102–2107Google Scholar
  3. 3.
    Kobayashi S, Shoda S, Uyama H (1997) Enzymatic catalysis. In: Kobayashi S (ed) Catalysis in precision polymerization. John Wiley & Sons, Chichester, pp 417–441Google Scholar
  4. 4.
    Kobayashi S (1999) Enzymatic polymerization: A new method of polymer synthesis. J Polym Sci Polym Chem 37:3041–3056CrossRefGoogle Scholar
  5. 5.
    Kobayashi S, Uyama H (1999) Biocatalytical routes to polymers. In: Schlueter AD (ed) Material science and technology-synthesis of polymers, vol 54. Wiley-VCH, Weinheim, pp 549–569Google Scholar
  6. 6.
    Kobayashi S, Uyama H, Ohmae M (2001) Enzymatic polymerization for precision polymer synthesis. Bull Chem Soc Jpn 74:613–635CrossRefGoogle Scholar
  7. 7.
    Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101:2097–2124PubMedCrossRefGoogle Scholar
  8. 8.
    Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:3793–3818PubMedCrossRefGoogle Scholar
  9. 9.
    Kobayashi S, Uyama H (2001) In vitro biosynthesis of polyesters. In: Babel WSA (ed) Advances in biochemical engineering/biotechnology, Biopolyesters, vol 71. Springer, Heidelberg, pp 241–262Google Scholar
  10. 10.
    Kobayashi S, Uyama H (2002) Enzymatic polymerization to polyesters. In: Doi Y, Steinbüchel A (eds) Handbook of biopolymers, polyesters I, vol 3a. Wiley-VCH, pp 373–400Google Scholar
  11. 11.
    Kobayashi S, Uyama H (2003) Enzymatic polymerization. In: Kroschwitz JI (ed) Encyclopedia of polymer science and technology, 3rd edn. Wiley, New York, pp 328–364Google Scholar
  12. 12.
    Cheng HN, Gross RA (eds) (2005) Polymer biocatalysis and biomaterials, ACS symposium series, vol 900. American Chemical Society, Washington, DCGoogle Scholar
  13. 13.
    Kobayashi S, Ritter H, Kaplan D (eds) (2006) Enzyme-catalyzed synthesis of polymers, Advances in polymer science, vol 194. Springer, BerlinGoogle Scholar
  14. 14.
    Kobayashi S (2009) Recent developments in lipase-catalyzed synthesis of polyesters. Macromol Rapid Commun 30:237–266PubMedCrossRefGoogle Scholar
  15. 15.
    Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353PubMedCrossRefGoogle Scholar
  16. 16.
    Kobayashi S (2010) Lipase-catalyzed polyester synthesis – a green polymer chemistry. Proc Jpn Acad, Ser B 86:338–365CrossRefGoogle Scholar
  17. 17.
    Cheng HN, Gross RA (eds) (2010) Green polymer chemistry: biocatalysis and biomaterials, ACS symposium series, vol 1043. American Chemical Society, Washington, DCGoogle Scholar
  18. 18.
    Loos K (ed) (2011) Biocatalysis in polymer chemistry. Wiley-VCH, WeinheimGoogle Scholar
  19. 19.
    Kobayashi S (2012) Enzymatic polymerization. In: Matyjaszewski K, Moeller M (eds) Polymer science: a comprehensive reference, vol 5. Elsevier, Amsterdam, pp 217–237CrossRefGoogle Scholar
  20. 20.
    Kobayashi S (2013) Green polymer chemistry: recent developments. Adv Polym Sci 262:141–166CrossRefGoogle Scholar
  21. 21.
    Kobayashi S (2014) Enzymatic polymerization. In: Seidel A (ed) Encyclopedia of polymer science and technology, 4th edn. Wiley, Hoboken, pp 221–292Google Scholar
  22. 22.
    Cheng HN, Gross RA, Smith PB (eds) (2015) Green polymer chemistry: Biobased materials and biocatalysis, ACS symposium series, vol 1192. American Chemical Society, Washington, DCGoogle Scholar
  23. 23.
    Shoda S, Kobayashi A, Kobayashi S (2015) Production of polymers by white biotechnology. In: Coelho MAZ, Ribeiro BD (eds) White biotechnology for sustainable chemistry. Royal Society of Chemistry, Cambridge, pp 274–309CrossRefGoogle Scholar
  24. 24.
    Kobayashi S (2015) Enzymatic ring-opening polymerization and polycondensation for the green synthesis of polyesters. Polym Adv Technol 26:677–686CrossRefGoogle Scholar
  25. 25.
    Shoda S, Uyama H, Kadokawa J et al (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar A, Khan A, Malhotra S et al (2016) Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem Soc Rev 45:6855–6887PubMedCrossRefGoogle Scholar
  27. 27.
    Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8:243–296PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Douka A, Vouyiouka S, Papaspyridi L-M et al (2018) A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 79:1–25CrossRefGoogle Scholar
  29. 29.
    Kobayashi S (2017) Green polymer chemistry: new methods of polymer synthesis using renewable starting materials. Struc Chem 28:461–474CrossRefGoogle Scholar
  30. 30.
    Okumura S, Iwai M, Tominaga Y (1984) Synthesis of ester oligomer by Aspergillius-niger lipase. Agric Biol Chem 48:2805–2808Google Scholar
  31. 31.
    Ajima A, Yoshimoto T, Takahashi K et al (1985) Polymerization of 10-hydroxydecanoic acid in benzene with polyethylene glycol-modified lipase. Biotechnol Lett 7:303–306CrossRefGoogle Scholar
  32. 32.
    Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes (1992). Published for the International Union of Biochemistry and Molecular Biology by Academic Press, San DiegoGoogle Scholar
  33. 33.
    Sym EA (1936) A method for enzymic ester synthesis. Enzymologia 1:156–160Google Scholar
  34. 34.
    Jones JB (1986) Enzymes in organic-synthesis. Tetrahedron 42:3351–3403CrossRefGoogle Scholar
  35. 35.
    Klibanov AM (1990) Asymmetric transformations catalyzed by enzymes in organic-solvents. Acc Chem Res 23:114–120CrossRefGoogle Scholar
  36. 36.
    Wong CH, Whitesides GMP (1994) Enzymes in synthetic organic chemistry. Pergamon, OxfordGoogle Scholar
  37. 37.
    Uyama H, Kobayashi S (1993) Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem Lett 22:1149–1150CrossRefGoogle Scholar
  38. 38.
    Uyama H, Takeya K, Kobayashi S (1993) Synthesis of polyesters by enzymatic ring-opening copolymerization using lipase catalyst. Proc Jpn Acad, Ser B 69:203–207CrossRefGoogle Scholar
  39. 39.
    Knani D, Gutman AL, Kohn DH (1993) Enzymatic polyesterification in organic media-enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyesters. II. Ring-opening polymerization of ε-caprolactone. J Polym Sci Polym Chem 31:1221–1232CrossRefGoogle Scholar
  40. 40.
    Uyama H, Takeya K, Hoshi N et al (1995) Lipase-catalyzed ring-opening polymerization of 12-dodecanolide. Macromolecules 28:7046–7050CrossRefGoogle Scholar
  41. 41.
    Foresti ML, Ferreira ML (2004) Synthesis of polycaprolactone using free/supported enzymatic and non-enzymatic catalysts. Macromol Rapid Commun 25:2025–2028CrossRefGoogle Scholar
  42. 42.
    Uppenberg J, Hansen MT, Patkar S et al (1994) Sequence, crystal-structure determination and refinement of 2 crystal forms of lipase B from Candida antarctica. Structure 2:293–308PubMedCrossRefGoogle Scholar
  43. 43.
    Gotor-Fernández V, Busto E, Gotor V (2006) Candida antarctica lipase B: An ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Syn Catal 348:797–812CrossRefGoogle Scholar
  44. 44.
    Hsieh Y-L, Wang Y, Chen H (2005) Enzyme immobilization onto ultrahigh specific surface cellulose fibers via amphiphilic (PEG) spacers and electrolyte (PAA) grafts. In: Polymer biocatalysis and biomaterials, ACS symposium series, vol 900. American Chemical Society, Washington, DC, pp 63–79CrossRefGoogle Scholar
  45. 45.
    Cheng HN, Gross RA (2002) Biocatalysis in polymer science: an overview. In: Biocatalysis in polymer science, ACS symposium series, vol 840. American Chemical Society, Washington, DC, pp 1–32CrossRefGoogle Scholar
  46. 46.
    Cantone S, Ferrario V, Corici L et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262–6276PubMedCrossRefGoogle Scholar
  47. 47.
    Widhyahrini K, Handayani N, Wahyuningrum D et al (2017) The microwave-assisted synthesis of polyethersulfone (pes) as a matrix in immobilization of Candida antarctica lipase B (Cal-B). Bull Chem Res Eng Cat 12:343–350Google Scholar
  48. 48.
    Takahashl K, Saito Y, Inada Y (1988) Lipase made active in hydrophobic media. J Am Oil Chem Soc 65:911CrossRefGoogle Scholar
  49. 49.
    Kodera Y, Sakurai K, Satoh Y et al (1998) Regioselective deacetylation of peracetylated monosaccharide derivatives by polyethylene glycol-modified lipase for the oligosaccharide synthesis. Biotechnol Lett 20:177–180CrossRefGoogle Scholar
  50. 50.
    Yang Z, Domach M, Auger R et al (1996) Polyethylene glycol-induced stabilization of subtilisin. Enzym Microb Technol 18:82–89CrossRefGoogle Scholar
  51. 51.
    Ohya Y, Sugitou T, Ouchi T (1995) Polycondensation of α-hydroxy acids by enzymes of peg-modified enzymes in organic media. J Macromol Sci-Pure Appl Chem A32:179–190CrossRefGoogle Scholar
  52. 52.
    Miletic N, Vukovic Z, Nastasovic A et al (2009) Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins-versatile immobilization supports for biocatalysts. J Mol Catal B Enzym 56:196–201CrossRefGoogle Scholar
  53. 53.
    Liu T, Liu Y, Wang X et al (2011) Improving catalytic performance of Burkholderia cepacia lipase immobilized on macroporous resin NKA. J Mol Catal B Enzym 71:45–50CrossRefGoogle Scholar
  54. 54.
    Valério A, Nicoletti G, Cipolatti EP et al (2015) Kinetic Study of Candida antarctica Lipase B immobilization using poly(methyl methacrylate) nanoparticles obtained by miniemulsion polymerization as support. Appl Biochem Biotechnol 175:2961–2971PubMedCrossRefGoogle Scholar
  55. 55.
    Sawada S, Akiyoshi K (2010) Nano-encapsulation of lipase by self-assembled nanogels: Induction of high enzyme activity and thermal stabilization. Macromol Biosci 10:353–358PubMedCrossRefGoogle Scholar
  56. 56.
    Nishimura T, Sasaki Y, Akiyoshi K (2017) Cancer therapy: Biotransporting self-assembled nanofactories using polymer vesicles with molecular permeability for enzyme prodrug cancer therapy. Adv Mater 29:1702406Google Scholar
  57. 57.
    LeDuc PR, Wong MS, Ferreira PM et al (2007) Towards an in vivo biologically inspired nanofactory. Nat Nanotechnol 2:3–7PubMedCrossRefGoogle Scholar
  58. 58.
    Omay D (2014) Immobilization of lipase onto a photo-crosslinked polymer network: characterization and polymerization applications. Biocatal Biotransformation 32:132–140CrossRefGoogle Scholar
  59. 59.
    Ye P, Xu Z-K, Wu J et al (2006) Nanofibrous membranes containing reactive groups: electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules 39:1041–1045CrossRefGoogle Scholar
  60. 60.
    Talbert JN, Wang L-S, Duncan B et al (2014) Immobilization and stabilization of lipase (CALB) through hierarchical interfacial assembly. Biomacromolecules 15:3915–3922PubMedCrossRefGoogle Scholar
  61. 61.
    Marciello M, Bolivar JM, Filice M et al (2013) Preparation of lipase-coated, stabilized, hydrophobic magnetic particles for reversible conjugation of biomacromolecules. Biomacromolecules 14:602–607PubMedCrossRefGoogle Scholar
  62. 62.
    Bellusci M, Francolini I, Martinelli A et al (2012) Lipase immobilization on differently functionalized vinyl-based amphiphilic polymers: influence of phase segregation on the enzyme hydrolytic activity. Biomacromolecules 13:805–813PubMedCrossRefGoogle Scholar
  63. 63.
    Mathesh M, Luan B, Akanbi TO et al (2016) Opening lids: Modulation of lipase immobilization by graphene oxides. ACS Catal 6:4760–4768CrossRefGoogle Scholar
  64. 64.
    Nakamura I, Yoneda H, Maeda T et al (2005) Enzymatic polymerization behavior using cellulose-binding domain deficient endoglucanase II. Macromol Biosci 5:623–628PubMedCrossRefGoogle Scholar
  65. 65.
    Kobayashi S, Kashiwa K, Kawasaki T et al (1991) Novel method for polysaccharide synthesis using an enzyme – the 1st in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J Am Chem Soc 113:3079–3084CrossRefGoogle Scholar
  66. 66.
    Fernández-Lorente G, Palomo JM, Mateo C et al (2006) Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules 7:2610–2615PubMedCrossRefGoogle Scholar
  67. 67.
    Mogensen JE, Sehgal P, Otzen DE (2005) Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry 44:1719–1730PubMedCrossRefGoogle Scholar
  68. 68.
    Kiran KR, Divakar S (2003) Lipase-catalysed polymerization of lactic acid and its film forming properties. World J Microb Biot 19:859–865CrossRefGoogle Scholar
  69. 69.
    Inkinen S, Hakkarainen M, Albertsson A-C et al (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532PubMedCrossRefGoogle Scholar
  70. 70.
    Ishimoto K, Arimoto M, Ohara H et al (2009) Biobased polymer system: miniemulsion of poly(alkyl methacrylate-graft-lactic acid)s. Biomacromolecules 10:2719–2723PubMedCrossRefGoogle Scholar
  71. 71.
    Ishimoto K, Arimoto M, Okuda T et al (2012) Biobased polymers: synthesis of graft copolymers and comb polymers using lactic acid macromonomer and properties of the product polymers. Biomacromolecules 13:3757–3768PubMedCrossRefGoogle Scholar
  72. 72.
    Ohara H, Onogi A, Yamamoto M et al (2010) Lipase-catalyzed oligomerization and hydrolysis of alkyl lactates: direct evidence in the catalysis mechanism that enantioselection is governed by a deacylation step. Biomacromolecules 11:2008–2015PubMedCrossRefGoogle Scholar
  73. 73.
    Ohara H, Nishioka E, Yamaguchi S et al (2011) Protease-catalyzed oligomerization and hydrolysis of alkyl lactates involving L-enantioselective deacylation step. Biomacromolecules 12:3833–3837PubMedCrossRefGoogle Scholar
  74. 74.
    Ohara H, Yamamoto M, Onogi A et al (2011) Optical resolution of n-butyl D- and L-lactates using immobilized lipase catalyst. J Biosci Bioeng 111:19–21PubMedCrossRefGoogle Scholar
  75. 75.
    Kobayashi S, Uyama H, Suda S et al (1997) Dehydration polymerization in aqueous medium catalyzed by lipase. Chem Lett:105–105Google Scholar
  76. 76.
    Suda S, Uyama H, Kobayashi S (1999) Dehydration polycondensation in water for synthesis of polyesters by lipase catalyst. Proc Jpn Acad, Ser B 75:201–206CrossRefGoogle Scholar
  77. 77.
    Matsumura S, Takahashi J (1986) Enzymatic-synthesis of functional oligomers. 1. Lipase catalyzed polymerization of hydroxy-acids. Makromol Chem Rapid Commun 7:369–373CrossRefGoogle Scholar
  78. 78.
    Ebata H, Toshima K, Matsumura S (2007) Lipase-catalyzed synthesis and curing of high-molecular-weight polyricinoleate. Macromol Biosci 7:798–803PubMedCrossRefGoogle Scholar
  79. 79.
    Noll O, Ritter H (1996) Enzymes in polymer chemistry, 9. Polymerizable oligoesters from cholic acid via lipase catalyzed condensation reactions. Macromol Rapid Commun 17:553–557CrossRefGoogle Scholar
  80. 80.
    Mahapatro A, Kumar A, Gross RA (2004) Mild, solvent-free ω-hydroxy acid polycondensations catalyzed by Candida antarctica lipase B. Biomacromolecules 5:62–68PubMedCrossRefGoogle Scholar
  81. 81.
    Feder D, Gross RA (2010) Exploring chain length selectivity in HiC-catalyzed polycondensation reactions. Biomacromolecules 11:690–697PubMedCrossRefGoogle Scholar
  82. 82.
    O’Hagan D, Zaidi NA (1994) Enzyme-catalyzed condensation polymerization of 11-hydroxyundecanoic acid with lipase from Candida-cylindracea. Polymer 35:3576–3578CrossRefGoogle Scholar
  83. 83.
    Olsson A, Lindstrom M, Iversen T (2007) Lipase-catalyzed synthesis of an epoxy-functionalized polyester from the suberin monomer cis-9,10-epoxy-18-hydroxyoctadecanoic acid. Biomacromolecules 8:757–760PubMedCrossRefGoogle Scholar
  84. 84.
    Dong H, Wang HD, Cao SG et al (1998) Lipase-catalyzed polymerization of lactones and linear hydroxyesters. Biotechnol Lett 20:905–908CrossRefGoogle Scholar
  85. 85.
    Veld MAJ, Palmans ARA, Meijer EW (2007) Selective polymerization of functional monomers with Novozym 435. J Polym Sci Polym Chem 45:5968–5978CrossRefGoogle Scholar
  86. 86.
    Noll O, Ritter H (1997) New side-chain poly(methacryl-rotaxanes) bearing cyclodextrins as non-covalently anchored ring components. Chemoenzymatic synthesis and degradation. Macromol Rapid Commun 18:53–58CrossRefGoogle Scholar
  87. 87.
    Ebata H, Toshima K, Matsumura S (2008) Lipase-catalyzed synthesis and properties of poly[(12-hydroxydodecanoate)-co-(12-hydroxystearate)] directed towards novel green and sustainable elastomers. Macromol Biosci 8:38–45PubMedCrossRefGoogle Scholar
  88. 88.
    O’Hagan D, Parker AH (1998) Enzyme mediated polyester synthesis with the lipase from Candida rugosa – preparation of an enantiomerically enriched polymer from an A-B monomer. Polym Bull 41:519–524CrossRefGoogle Scholar
  89. 89.
    Knani D, Kohn DH (1993) Enzymatic polyesterification in organic media. II. Enzyme-catalyzed synthesis of lateral-substituted aliphatic polyesters and copolyesters. J Polym Sci Polym Chem 31:2887–2897CrossRefGoogle Scholar
  90. 90.
    Kanca U, Van Buijtenen J, Van As BAC et al (2008) Iterative tandem catalysis of racemic AB monomers. J Polym Sci Polym Chem 46:2721–2733CrossRefGoogle Scholar
  91. 91.
    Miao SD, Zhang SP, Su ZG et al (2008) Chemoenzymatic synthesis of oleic acid-based polyesters for use as highly stable biomaterials. J Polym Sci Polym Chem 46:4243–4248CrossRefGoogle Scholar
  92. 92.
    Binns F, Roberts SM, Taylor A et al (1993) Enzymatic polymerization of an unactivated diol diacid system. J Chem Soc-Perkin Trans 1:899–904CrossRefGoogle Scholar
  93. 93.
    Wang ZL, Hiltunen K, Orava P et al (1996) Lipase-catalyzed polyester synthesis. J Macromol Sci-Pure Appl Chem A33:599–612CrossRefGoogle Scholar
  94. 94.
    Linko YY, Wang ZL, Seppälä J (1995) Lipase-catalyzed linear aliphatic polyester synthesis in organic-solvent. Enzym Microb Technol 17:506–511CrossRefGoogle Scholar
  95. 95.
    Linko YY, Seppälä J (1996) Producing high molecular weight biodegradable polyesters. ChemTech 26:25–31Google Scholar
  96. 96.
    Uyama H, Inada K, Kobayashi S (1998) Enzymatic polymerization of dicarboxylic acid and glycol to polyester in solvent-free system. Chem Lett:1285–1286Google Scholar
  97. 97.
    Uyama H, Inada K, Kobayashi S (2000) Lipase-catalyzed synthesis of aliphatic polyesters by polycondensation of dicarboxylic acids and glycols in solvent-free system. Polym J 32:440–443CrossRefGoogle Scholar
  98. 98.
    Binns F, Harffey P, Roberts SM et al (1998) Studies of lipase-catalyzed polyesterification of an unactivated diacid/diol system. J Polym Sci Polym Chem 36:2069–2079CrossRefGoogle Scholar
  99. 99.
    Mahapatro A, Kalra B, Kumar A et al (2003) Lipase-catalyzed polycondensations: effect of substrates and solvent on chain formation, dispersity, and end-group structure. Biomacromolecules 4:544–551PubMedCrossRefGoogle Scholar
  100. 100.
    Kubisa P (2005) Ionic liquids in the synthesis and modification of polymers. J Polym Sci Polym Chem 43:4675–4683CrossRefGoogle Scholar
  101. 101.
    Uyama H, Takamoto T, Kobayashi S (2002) Enzymatic synthesis of polyesters in ionic liquids. Polym J 34:94–96CrossRefGoogle Scholar
  102. 102.
    Chen B, Hu J, Miller EM et al (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. Biomacromolecules 9:463–471PubMedCrossRefGoogle Scholar
  103. 103.
    Binns F, Harffey P, Roberts SM et al (1999) Studies leading to the large scale synthesis of polyesters using enzymes. J Chem Soc-Perkin Trans 1:2671–2676CrossRefGoogle Scholar
  104. 104.
    Korupp C, Weberskirch R, Muller JJ et al (2010) Scaleup of lipase-catalyzed polyester synthesis. Org Process Res Dev 14:1118–1124CrossRefGoogle Scholar
  105. 105.
    Yao D-H, Li G-J, Kuila T et al (2011) Lipase-catalyzed synthesis and characterization of biodegradable polyester containing L-malic acid unit in solvent system. J Appl Polym Sci 120:1114–1120CrossRefGoogle Scholar
  106. 106.
    Vouyiouka SN, Topakas E, Katsini A et al (2013) A green route for the preparation of aliphatic polyesters via lipase-catalyzed prepolymerization and low-temperature postpolymerization. Macromol Mater Eng 298:679–689CrossRefGoogle Scholar
  107. 107.
    Kumar A, Kulshrestha AS, Gao W et al (2003) Versatile route to polyol polyesters by lipase catalysis. Macromolecules 36:8219–8221CrossRefGoogle Scholar
  108. 108.
    Fu HY, Kulshrestha AS, Gao W et al (2003) Physical characterization of sorbitol or glycerol containing aliphatic copolyesters synthesized by lipase-catalyzed polymerization. Macromolecules 36:9804–9808CrossRefGoogle Scholar
  109. 109.
    Kulshrestha AS, Gao W, Gross RA (2005) Glycerol copolyesters: control of branching and molecular weight using a lipase catalyst. Macromolecules 38:3193–3204CrossRefGoogle Scholar
  110. 110.
    Kulshrestha AS, Gao W, Fu HY et al (2007) Synthesis and characterization of branched polymers from lipase-catalyzed trimethylolpropane copolymerizations. Biomacromolecules 8:1794–1801PubMedCrossRefGoogle Scholar
  111. 111.
    Zhang Y-R, Spinella S, Xie W et al (2013) Polymeric triglyceride analogs prepared by enzyme-catalyzed condensation polymerization. Eur Polym J 49:793–803CrossRefGoogle Scholar
  112. 112.
    Hu J, Gao W, Kulshrestha A et al (2006) “Sweet polyesters”: lipase-catalyzed condensation – polymerizations of alditols. Macromolecules 39:6789–6792CrossRefGoogle Scholar
  113. 113.
    Hunsen M, Azim A, Mang H et al (2007) A cutinase with polyester synthesis activity. Macromolecules 40:148–150CrossRefGoogle Scholar
  114. 114.
    Yang YX, Lu WH, Zhang XY et al (2010) Two-step biocatalytic route to biobased functional polyesters from ω-carboxy fatty acids and diols. Biomacromolecules 11:259–268PubMedCrossRefGoogle Scholar
  115. 115.
    Kanelli M, Douka A, Vouyiouka S et al (2014) Production of biodegradable polyesters via enzymatic polymerization and solid state finishing. J Appl Polym Sci 131.
  116. 116.
    Habeych DI, Juhl PB, Pleiss J et al (2011) Biocatalytic synthesis of polyesters from sugar-based building blocks using immobilized Candida antarctica lipase B. J Mol Catal B Enzym 71:1–9CrossRefGoogle Scholar
  117. 117.
    Barrett DG, Merkel TJ, Luft JC et al (2010) One-step syntheses of photocurable polyesters based on a renewable resource. Macromolecules 43:9660–9667CrossRefGoogle Scholar
  118. 118.
    Yang YX, Lu WH, Cai JL et al (2011) Poly(oleic diacid-co-glycerol): comparison of polymer structure resulting from chemical and lipase catalysis. Macromolecules 44:1977–1985CrossRefGoogle Scholar
  119. 119.
    Nguyen H, Löf D, Hvilsted S et al (2016) Highly branched bio-based unsaturated polyesters by enzymatic polymerization. Polymers 8:363. CrossRefPubMedCentralPubMedGoogle Scholar
  120. 120.
    Pellis A, Guarneri A, Brandauer M et al (2016) Exploring mild enzymatic sustainable routes for the synthesis of bio-degradable aromatic-aliphatic oligoesters. Biotechnol J 11:642–647PubMedCrossRefGoogle Scholar
  121. 121.
    Uyama H, Wada S, Kobayashi S (1999) Synthesis of aliphatic polyester by insertion of glycols into polyanhydrides using lipase catalyst. Chem Lett 28:893–894CrossRefGoogle Scholar
  122. 122.
    Wallace JS, Morrow CJ (1989) Biocatalytic synthesis of polymers -synthesis of an optically-active, epoxy-substituted polyester by lipase-catalyzed polymerization. J Polym Sci Polym Chem 27:2553–2567CrossRefGoogle Scholar
  123. 123.
    Japu C, de Ilarduya AM, Alla A et al (2015) Copolyesters made from 1,4-butanediol, sebacic acid, and D-glucose by melt and enzymatic polycondensation. Biomacromolecules 16:868–879PubMedCrossRefGoogle Scholar
  124. 124.
    Pellis A, Ferrario V, Zartl B et al (2016) Enlarging the tools for efficient enzymatic polycondensation: structural and catalytic features of cutinase 1 from Thermobifida cellulosilytica. Cat Sci Technol 6:3430–3442CrossRefGoogle Scholar
  125. 125.
    Pellis A, Guebitz GM, Farmer TJ (2016) On the effect of microwave energy on lipase-catalyzed polycondensation reactions. Molecules 21:1245. CrossRefPubMedCentralPubMedGoogle Scholar
  126. 126.
    Wang HY, Zhang WW, Wang N et al (2010) Biocatalytic synthesis and in vitro release of biodegradable linear polyesters with pendant ketoprofen. Biomacromolecules 11:3290–3293PubMedCrossRefGoogle Scholar
  127. 127.
    Wang H-Y, Zhou Y-J, Wang Z et al (2011) Enzyme-catalyzed synthesis of a novel thermosensitive polyester with pendant ketoprofen. Macromol Biosci 11:595–599PubMedCrossRefGoogle Scholar
  128. 128.
    Berkane C, Mezoul G, Lalot T et al (1997) Lipase-catalyzed polyester synthesis in organic medium. Study of ring-chain equilibrium. Macromolecules 30:7729–7734CrossRefGoogle Scholar
  129. 129.
    Jacobson H, Stockmayer WH (1950) Intermolecular reaction in polycondensations. 1. The theory of linear systems. J Chem Phys 18:1600–1606CrossRefGoogle Scholar
  130. 130.
    Lavalette A, Lalot T, Brigodiot M et al (2002) Lipase-catalyzed synthesis of a pure macrocyclic polyester from dimethyl terephthalate and diethylene glycol. Biomacromolecules 3:225–228PubMedCrossRefGoogle Scholar
  131. 131.
    Ciulik C, Safari M, Martínez de Ilarduya A et al (2017) Poly(butylene succinate-ran-ε-caprolactone) copolyesters: enzymatic synthesis and crystalline isodimorphic character. Eur Polym J 95:795–808CrossRefGoogle Scholar
  132. 132.
    Warwel S, Demes C, Steinke G (2001) Polyesters by lipase-catalyzed polycondensation of unsaturated and epoxidized long-chain α,ω-dicarboxylic acid methyl esters with diols. J Polym Sci Polym Chem 39:1601–1609CrossRefGoogle Scholar
  133. 133.
    Azim H, Dekhterman A, Jiang ZZ et al (2006) Candida antarctica lipase B-catalyzed synthesis of poly(butylene succinate): shorter chain building blocks also work. Biomacromolecules 7:3093–3097PubMedCrossRefGoogle Scholar
  134. 134.
    Marcilla R, de Geus M, Mecerreyes D et al (2006) Enzymatic polyester synthesis in ionic liquids. Eur Polym J 42:1215–1221CrossRefGoogle Scholar
  135. 135.
    Chaudhary AK, Beckman EJ, Russell AJ (1995) Rational control of polymer molecular-weight and dispersity during enzyme-catalyzed polyester synthesis in supercritical fluids. J Am Chem Soc 117:3728–3733CrossRefGoogle Scholar
  136. 136.
    Linko YY, Wang ZL, Seppälä J (1994) Lipase-catalyzed synthesis of poly(1,4-butanediol succinate) in organic-solvent. Biocatalysis 8:269–282CrossRefGoogle Scholar
  137. 137.
    Wallace JS, Morrow CJ (1989) Biocatalytic synthesis of polymers. 2. Preparation of [AA-BB]X polyesters by porcine pancreatic lipase catalyzed transesterification in anhydrous, low polarity organic solvents. J Polym Sci Polym Chem 27:3271–3284CrossRefGoogle Scholar
  138. 138.
    Brazwell EM, Filos DY, Morrow CJ (1995) Biocatalytic synthesis of polymers. 3. Formation of a high-molecular-weight polyester through limitation of hydrolysis by enzyme-bound water and through equilibrium control. J Polym Sci Polym Chem 33:89–95CrossRefGoogle Scholar
  139. 139.
    Hilker I, Rabani G, Verzijl GKM et al (2006) Chiral polyesters by dynamic kinetic resolution polymerization. Angew Chem Int Ed 45:2130–2132CrossRefGoogle Scholar
  140. 140.
    Uyama H, Kobayashi S (1994) Lipase-catalyzed polymerization of divinyl adipate with glycols to polyesters. Chem Lett:1687–1690Google Scholar
  141. 141.
    Uyama H, Yaguchi S, Kobayashi S (1999) Lipase-catalyzed polycondensation of dicarboxylic acid-divinyl esters and glycols to aliphatic polyesters. J Polym Sci Polym Chem 37:2737–2745CrossRefGoogle Scholar
  142. 142.
    Taresco V, Creasey RG, Kennon J et al (2016) Variation in structure and properties of poly(glycerol adipate) via control of chain branching during enzymatic synthesis. Polymer 89:41–49CrossRefGoogle Scholar
  143. 143.
    Chaudhary AK, Beckman EJ, Russell AJ (1997) Biocatalytic polyester synthesis: analysis of the evolution of molecular weight and end group functionality. Biotechnol Bioeng 55:227–239PubMedCrossRefGoogle Scholar
  144. 144.
    Kline BJ, Lele SS, Lenart PJ et al (2000) Use of a batch-stirred reactor to rationally tailor biocatalytic polytransesterification. Biotechnol Bioeng 67:424–434PubMedCrossRefGoogle Scholar
  145. 145.
    Naolou T, Busse K, Kressler J (2010) Synthesis of well-defined graft copolymers by combination of enzymatic polycondensation and “click” chemistry. Biomacromolecules 11:3660–3667PubMedCrossRefGoogle Scholar
  146. 146.
    Kim DY, Dordick JS (2001) Combinatorial array-based enzymatic polyester synthesis. Biotechnol Bioeng 76:200–206PubMedCrossRefGoogle Scholar
  147. 147.
    Takamoto T, Uyama H, Kobayashi S (2001) Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. E-Polymers 4:1–6Google Scholar
  148. 148.
    Uyama H, Yaguchi S, Kobayashi S (1999) Enzymatic synthesis of aromatic polyesters by lipase-catalyzed polymerization of dicarboxylic acid divinyl esters and glycols. Polym J 31:380–383CrossRefGoogle Scholar
  149. 149.
    Rodney RL, Allinson BT, Beckman EJ et al (1999) Enzyme-catalyzed polycondensation reactions for the synthesis of aromatic polycarbonates and polyesters. Biotechnol Bioeng 65:485–489PubMedCrossRefGoogle Scholar
  150. 150.
    Barrett DG, Yousaf MN (2008) Preparation of a class of versatile, chemoselective, and amorphous polyketoesters. Biomacromolecules 9:2029–2035PubMedCrossRefGoogle Scholar
  151. 151.
    Frampton MB, Subczynska I, Zelisko PM (2010) Biocatalytic synthesis of silicone polyesters. Biomacromolecules 11:1818–1825PubMedCrossRefGoogle Scholar
  152. 152.
    Jiang Y, Woortman AJJ, van EGORA et al (2013) Enzyme-catalyzed synthesis of unsaturated aliphatic polyesters based on green monomers from renewable resources. Biomol Ther 3:461–480Google Scholar
  153. 153.
    Liu W, Wang F, Tan T et al (2013) Lipase-catalyzed synthesis and characterization of polymers by cyclodextrin as support architecture. Carbohydr Polym 92:633–640PubMedCrossRefGoogle Scholar
  154. 154.
    Zhao X, Bansode SR, Ribeiro A et al (2016) Ultrasound enhances lipase-catalyzed synthesis of poly (ethylene glutarate). Ultrason Sonochem 31:506–511PubMedCrossRefGoogle Scholar
  155. 155.
    Tomke PD, Zhao X, Chiplunkar PP et al (2017) Lipase-ultrasound assisted synthesis of polyesters. Ultrason Sonochem 38:496–502PubMedCrossRefGoogle Scholar
  156. 156.
    Takamoto T, Kerep P, Uyama H et al (2001) Lipase-catalyzed transesterification of polyesters to ester copolymers. Macromol Biosci 1:223–227CrossRefGoogle Scholar
  157. 157.
    Debuissy T, Pollet E, Avérous L (2016) Enzymatic synthesis of a bio-based copolyester from poly(butylene succinate) and poly((R)-3-hydroxybutyrate): study of reaction parameters on the transesterification rate. Biomacromolecules 17:4054–4063PubMedCrossRefGoogle Scholar
  158. 158.
    Debuissy T, Pollet E, Avérous L (2017) Enzymatic synthesis of biobased poly(1,4-butylene succinate-ran-2,3-butylene succinate) copolyesters and characterization. Influence of 1,4- and 2,3-butanediol contents. Eur Polym J 93:103–115CrossRefGoogle Scholar
  159. 159.
    Debuissy T, Pollet E, Avérous L (2017) Lipase-catalyzed synthesis of biobased and biodegradable aliphatic copolyesters from short building blocks. Effect of the monomer length. Eur Polym J 97:328–337CrossRefGoogle Scholar
  160. 160.
    Jiang Y, Woortman AJJ, Alberda van Ekenstein GOR et al (2014) Enzymatic synthesis of biobased polyesters using 2,5-bis(hydroxymethyl)furan as the building block. Biomacromolecules 15:2482–2493PubMedCrossRefGoogle Scholar
  161. 161.
    Jiang Y, Woortman AJJ, Alberda van Ekenstein GOR et al (2015) A biocatalytic approach towards sustainable furanic–aliphatic polyesters. Polym Chem 6:5198–5211CrossRefGoogle Scholar
  162. 162.
    Papageorgiou GZ, Papageorgiou DG, Terzopoulou Z et al (2016) Production of bio-based 2,5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur Polym J 83:202–229CrossRefGoogle Scholar
  163. 163.
    Juais D, Naves AF, Li C et al (2010) Isosorbide polyesters from enzymatic catalysis. Macromolecules 43:10315–10319CrossRefGoogle Scholar
  164. 164.
    Kato M, Toshima K, Matsumura S (2009) Direct enzymatic synthesis of a polyester with free pendant mercapto groups. Biomacromolecules 10:366–373PubMedCrossRefGoogle Scholar
  165. 165.
    Tanaka A, Kohri M, Takiguchi T et al (2012) Enzymatic synthesis of reversibly crosslinkable polyesters with pendant mercapto groups. Polym Degrad Stab 97:1415–1422CrossRefGoogle Scholar
  166. 166.
    Gustini L, Lavilla C, Janssen WWTJ et al (2016) Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis. ChemSusChem 9:2250–2260PubMedCrossRefGoogle Scholar
  167. 167.
    Gustini L, Finzel L, Lavilla C et al (2016) Understanding the limitations of the solvent-free enzymatic synthesis of sorbitol-containing polyesters. ACS Sustain Chem Eng 4:2259–2268CrossRefGoogle Scholar
  168. 168.
    Kline BJ, Beckman EJ, Russell AJ (1998) One-step biocatalytic synthesis of linear polyesters with pendant hydroxyl groups. J Am Chem Soc 120:9475–9480CrossRefGoogle Scholar
  169. 169.
    Uyama H, Inada K, Kobayashi S (2001) Regioselectivity control in lipase-catalyzed polymerization of divinyl sebacate and triols. Macromol Biosci 1:40–44CrossRefGoogle Scholar
  170. 170.
    Uyama H, Klegraf E, Wada S et al (2000) Regioselective polymerization of sorbitol and divinyl sebacate using lipase catalyst. Chem Lett:800–801Google Scholar
  171. 171.
    Tsujimoto T, Uyama H, Kobayashi S (2001) Enzymatic synthesis of cross-linkable polyesters from renewable resources. Biomacromolecules 2:29–31PubMedCrossRefGoogle Scholar
  172. 172.
    Tsujimoto T, Uyama H, Kobayashi S (2002) Enzymatic synthesis and curing of biodegradable crosslinkable polyesters. Macromol Biosci 2:329–335CrossRefGoogle Scholar
  173. 173.
    Uyama H, Kuwabara M, Tsujimoto T et al (2003) Enzymatic synthesis and curing of biodegradable epoxide-containing polyesters from renewable resources. Biomacromolecules 4:211–215PubMedCrossRefGoogle Scholar
  174. 174.
    Torron S, Semlitsch S, Martinelle M et al (2016) Biocatalytic synthesis of epoxy resins from fatty acids as a versatile route for the formation of polymer thermosets with tunable properties. Biomacromolecules 17:4003–4010PubMedCrossRefGoogle Scholar
  175. 175.
    Yang Z, Zhang XF, Luo XG et al (2013) Enzymatic synthesis of poly(butylene-co-sebacate-co-glycolate) copolyesters and evaluation of the copolymer nanoparticles as biodegradable carriers for doxorubicin delivery. Macromolecules 46:1743–1753CrossRefGoogle Scholar
  176. 176.
    Naves AF, Fernandes HTC, Immich APS et al (2013) Enzymatic syntheses of unsaturated polyesters based on isosorbide and isomannide. J Polym Sci Polym Chem 51:3881–3891CrossRefGoogle Scholar
  177. 177.
    Kumari M, Gupta S, Achazi K et al (2015) Dendronized multifunctional amphiphilic polymers as efficient nanocarriers for biomedical applications. Macromol Rapid Commun 36:254–261PubMedCrossRefGoogle Scholar
  178. 178.
    Kumar S, Achazi K, Licha K et al (2017) Chemo-enzymatic synthesis of dendronized polymers for cyanine dye encapsulation. Adv Polym Technol.
  179. 179.
    Kobayashi S, Uyama H (1993) Enzymatic polymerization of cyclic acid anhydrides and glycols by a lipase catalyst. Makromol Chem Rapid Commun 14:841–844CrossRefGoogle Scholar
  180. 180.
    Uyama H, Wada S, Fukui T et al (2003) Lipase-catalyzed synthesis of polyesters from anhydride derivatives involving dehydration. Biochem Eng J 16:145–152CrossRefGoogle Scholar
  181. 181.
    Yamaguchi S, Tanha M, Hult A et al (2014) Green polymer chemistry: lipase-catalyzed synthesis of bio-based reactive polyesters employing itaconic anhydride as a renewable monomer. Polym J 46:2–13CrossRefGoogle Scholar
  182. 182.
    Namekawa S, Uyama H, Kobayashi S (2000) Enzymatic synthesis of polyesters from lactones, dicarboxylic acid divinyl esters, and glycols through combination of ring-opening polymerization and polycondensation. Biomacromolecules 1:335–338PubMedCrossRefGoogle Scholar
  183. 183.
    Jiang ZZ (2008) Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactone, dialkyl diester, and diol. Biomacromolecules 9:3246–3251PubMedCrossRefGoogle Scholar
  184. 184.
    Jiang Z, Zhang J (2013) Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactide with diesters and diols. Polymer 54:6105–6113CrossRefGoogle Scholar
  185. 185.
    Mazzocchetti L, Scandola M, Jiang ZZ (2009) Enzymatic synthesis and structural and thermal properties of poly(ω-pentadecalactone-co-butylene-co-succinate). Macromolecules 42:7811–7819CrossRefGoogle Scholar
  186. 186.
    Eriksson M, Fogelstrom L, Hult K et al (2009) Enzymatic one-pot route to telechelic polypentadecalactone epoxide: synthesis, uv curing, and characterization. Biomacromolecules 10:3108–3113PubMedCrossRefGoogle Scholar
  187. 187.
    Nie W-C, Dang H-C, Wang X-L et al (2017) One-step enzymatic synthesis of poly(p-dioxanone-co-butylene-co-succinate) copolyesters with well-defined structure and enhanced degradability. Polymer 111:107–114CrossRefGoogle Scholar
  188. 188.
    Qian X, Wang J, Li Y et al (2014) Two enzyme cooperatively catalyzed tandem polymerization for the synthesis of polyester containing chiral (R)- or (S)-ibuprofen pendants. Macromol Rapid Commun 35:1788–1794CrossRefGoogle Scholar
  189. 189.
    Gu Q-M, Maslanka WW, Cheng HN (2008) Enzyme-catalyzed polyamides and their derivatives. In: Polymer biocatalysis and biomaterials II, ACS symposium series, vol 999. American Chemical Society, Washington, DC, pp 309–319CrossRefGoogle Scholar
  190. 190.
    Stavila E, van Ekenstein GORA, Loos K (2013) Enzyme-catalyzed synthesis of aliphatic-aromatic oligoamides. Biomacromolecules 14:1600–1606PubMedCrossRefGoogle Scholar
  191. 191.
    Jiang Y, Maniar D, Woortman AJJ et al (2015) Enzymatic polymerization of furan-2,5-dicarboxylic acid-based furanic-aliphatic polyamides as sustainable alternatives to polyphthalamides. Biomacromolecules 16:3674–3685PubMedCrossRefGoogle Scholar
  192. 192.
    Jiang Y, Maniar D, Woortman AJJ et al (2016) Enzymatic synthesis of 2,5-furandicarboxylic acid-based semi-aromatic polyamides: enzymatic polymerization kinetics, effect of diamine chain length and thermal properties. RSC Adv 6:67941–67953CrossRefGoogle Scholar
  193. 193.
    Steunenberg P, Uiterweerd M, Sijm M et al (2013) Enzyme-catalyzed polymerization of β-alanine esters, a sustainable route towards the formation of poly-β-alanine. Curr Org Chem 17:682–690CrossRefGoogle Scholar
  194. 194.
    Zhang Y, Xia B, Li Y et al (2016) Solvent-free lipase-catalyzed synthesis: unique properties of enantiopure D- and L- polyaspartates and their complexation. Biomacromolecules 17:362–370PubMedCrossRefGoogle Scholar
  195. 195.
    Totsingan F, Centore R, Gross RA (2017) CAL-B catalyzed regioselective bulk polymerization of L-aspartic acid diethyl ester to α-linked polypeptides. Chem Commun 53:4030–4033CrossRefGoogle Scholar
  196. 196.
    Kato M, Toshima K, Matsumura S (2005) Preparation of aliphatic poly(thioester) by the lipase-catalyzed direct polycondensation of 11-mercaptoundecanoic acid. Biomacromolecules 6:2275–2280PubMedCrossRefGoogle Scholar
  197. 197.
    Kato M, Toshima K, Matsumura S (2006) Enzyme-catalyzed preparation of aliphatic polythioester by direct polycondensation of diacid diester and dithiol. Macromol Rapid Commun 27:605–610CrossRefGoogle Scholar
  198. 198.
    Iwata S, Toshima K, Matsumura S (2003) Enzyme-catalyzed preparation of aliphatic polyesters containing thioester linkages. Macromol Rapid Commun 24:467–471CrossRefGoogle Scholar
  199. 199.
    Wu W-X, Yang X-L, Liu B-Y et al (2016) Lipase-catalyzed synthesis of oxidation-responsive poly(ethylene glycol)-b-poly(β-thioether ester) amphiphilic block copolymers. RSC Adv 6:11870–11879CrossRefGoogle Scholar
  200. 200.
    Finnveden M, Nameer S, Johansson M et al (2016) One-component thiol-alkene functional oligoester resins utilizing lipase catalysis. Macromol Chem Phys 217:1335–1341CrossRefGoogle Scholar
  201. 201.
    Jiang ZZ, Liu C, Xie WC et al (2007) Controlled lipase-catalyzed synthesis of poly(hexamethylene carbonate). Macromolecules 40:7934–7943CrossRefGoogle Scholar
  202. 202.
    Rodney RL, Stagno JL, Beckman EJ et al (1999) Enzymatic synthesis of carbonate monomers and polycarbonates. Biotechnol Bioeng 62:259–266PubMedCrossRefGoogle Scholar
  203. 203.
    Matsumura S, Harai S, Toshima K (2000) Lipase-catalyzed polymerization of diethyl carbonate and diol to aliphatic poly(alkylene carbonate). Macromol Chem Phys 201:1632–1639CrossRefGoogle Scholar
  204. 204.
    Jiang ZZ, Liu C, Gross RA (2008) Lipase-catalyzed synthesis of aliphatic poly(carbonate-co-esters). Macromolecules 41:4671–4680CrossRefGoogle Scholar
  205. 205.
    Jiang ZZ (2011) Lipase-catalyzed copolymerization of dialkyl carbonate with 1,4-butanediol and ω-pentadecalactone: Synthesis of poly-(ω-pentadecalactone-co-butylene-co-carbonate). Biomacromolecules 12:1912–1919PubMedCrossRefGoogle Scholar
  206. 206.
    Liu C, Jiang ZZ, Decatur J et al (2011) Chain growth and branch structure formation during lipase-catalyzed synthesis of aliphatic polycarbonate polyols. Macromolecules 44:1471–1479CrossRefGoogle Scholar
  207. 207.
    Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4523PubMedCrossRefGoogle Scholar
  208. 208.
    Patil DR, Rethwisch DG, Dordick JS (1991) Enzymatic-synthesis of a sucrose-containing linear polyester in nearly anhydrous organic media. Biotechnol Bioeng 37:639–646PubMedCrossRefGoogle Scholar
  209. 209.
    Park HG, Chang HN, Dordick JS (1994) Enzymatic-synthesis of various aromatic polyesters in anhydrous organic-solvents. Biocatalysis 11:263–271CrossRefGoogle Scholar
  210. 210.
    Kawai F, Nakadai K, Nishioka E et al (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly(D-lactic acid). Polym Degrad Stabil 96:1342–1348CrossRefGoogle Scholar
  211. 211.
    Wilmouth RC, Clifton IJ, Robinson CV et al (1997) Structure of a specific acyl-enzyme complex formed between β-casomorphin-7 and Porcine pancreatic elastase. Nat Struct Biol 4:456–462PubMedCrossRefGoogle Scholar
  212. 212.
    Ollis DL, Cheah E, Cygler M et al (1992) The α/β-hydrolase fold. Protein Eng 5:197–211PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Borén L, Martín-Matute B, Xu Y et al (2006) (S)-selective kinetic resolution and chemoenzymatic dynamic kinetic resolution of secondary alcohols. Chem Eur J 12:225–232CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Kyoto University, Yoshida-honmachi, Sakyo-kuKyotoJapan
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations