Synthesis of Polysaccharides III: Sucrase as Catalyst

  • Satoshi Kimura
  • Tadahisa IwataEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Sucrase-type glycosyltransferases that classified into non-Leloir glycosyltransferases, named glucansucrase and fructansucrase, catalyze in transfer of either a glucose or a fructose from sucrose to produce glucans or fructans. The reactions need only a renewable carbon resource, such as sucrose, and proceed very efficiently, with high yields, with regio- and stereoselectivity, and in one-pot water-based system. This chapter provides an overview of the glucansucrase and fructansucrase enzymes, their reaction, and product specificity. Finally, we discuss the potential applications of α-glucans produced by glucansucrase in new bio-based materials.


α-Glucan Fructan Glucansucrase Fructansucrase Glucosyltransferase Sucrose 


  1. 1.
    Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215CrossRefGoogle Scholar
  2. 2.
    Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592PubMedCrossRefGoogle Scholar
  3. 3.
    Sedebotham RL (1974) Dextrans. Adv Carbohydr Chem 30:371–444Google Scholar
  4. 4.
    Groenwall AJ, Ingelman BJA (1948) Manufacture of infusion and injection fluids. US Patent 2:437–518Google Scholar
  5. 5.
    Hehre EJ, Sugg JY (1942) Serologically reactive polysaccharides produced through the action of bacterial enzymes: I. Dextran of Leuconostoc mesenteroides from sucrose. J Exp Med 75:339–353PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Albenne C, Skov LK, Mirza O et al (2004) Molecular basis of the amylose-like polymer formation catalyzed by Neisseria polysaccharea amylosucrase. J Biol Chem 279:726734CrossRefGoogle Scholar
  7. 7.
    van der Veen BA, Potocki-Véronese G, Albenne C et al (2004) Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity. FEBS Lett 560:91–97PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    van Leeuwen SS, Kralj S, Eeuwema W et al (2009) Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of Lactobacillus reuteri strain 180. Biomacromolecules 10:580–588PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hehre EJ, Hamilton DM (1946) Bacterial synthesis of an amylopectin-like polysaccharide from sucrose. J Biol Chem 166:777–778PubMedPubMedCentralGoogle Scholar
  10. 10.
    Büttcher V, Welsh T, Willmitzer L et al (1997) Cloning and characterization of the gene for amylosucrase from Neisseria polysaccharea: production of a linear α-1,4-glucan. J Bacteriol 179:3324–3330PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Skov LK, Mirza O, Henriksen A et al (2001) Amylosucrase, a glucan-synthesizing enzyme from the α-amylase family. J Biol Chem 276:25273–25278PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Skov LK, Mirza O, Sprogoe D et al (2002) Oligosaccharide and sucrose complexes of amylosucrase – structural implications for the polymerase activity. J Biol Chem 277:47741–47747PubMedCrossRefGoogle Scholar
  13. 13.
    Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384PubMedPubMedCentralGoogle Scholar
  14. 14.
    Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380PubMedPubMedCentralGoogle Scholar
  15. 15.
    Gilpin ML, Ruccell RRB, Morrissey P (1985) Cloning and expression of two Streptococcus mutans glucosyltransferases in Escherichia coli K-12. Infect Immun 49:414–416PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lairson LL, Henrissat B, Davies GJ et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Simpson CL, Cheetham NWH, Giffard PM et al (1995) Four glucosyltransferases, GtfJ, GtfK, GtfL and GtfM, from Streptococcus salivarius ATCC 25975. Microbiology 141:1451–1460PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20PubMedCrossRefGoogle Scholar
  21. 21.
    Uitdehaag JCM, van der Veen BA, Dijkhuizen L et al (2002) Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family. Enzyme Microbial Technol 30:295–304CrossRefGoogle Scholar
  22. 22.
    Barends TR, Bultema JB, Kaper T et al (2007) Three-way stabilization of the covalent intermediate in amylomaltase, an α-amylase-like transglycosylase. J Biol Chem 282:17242–17249PubMedCrossRefGoogle Scholar
  23. 23.
    Vujicic-Zagar A, Pijning T, Kralj S et al (2010) Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc Natl Acad Sci USA107:21406–21411CrossRefGoogle Scholar
  24. 24.
    Devulapalle KS, Goodman SD, Gao Q et al (1997) Knowledge based model of a glucosyltransferase from the oral bacterial group of mutans streptococci. Protein Sci 6:2489–2493PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Skov LK, Mirza O, Sprogoe D et al (2002) Oligosaccharide and sucrose complexes of amylosucrase. Structural implications for the polymerase activity. J Biol Chem 277:47741–47747PubMedCrossRefGoogle Scholar
  26. 26.
    Brzozowski AM, Davies GJ (1997) Structure of the Aspergillus oryzae α-amylase complexed with the inhibitor acarbose at 2.0 A resolution. Biochemistry 36:10837–10845PubMedCrossRefGoogle Scholar
  27. 27.
    Uitdehaag JCM, Mosi R, Kalk KH et al (1999) X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat Struct Biol 6:432–436PubMedCrossRefGoogle Scholar
  28. 28.
    van Hijum SAFT, Kralj S, Ozimek LK et al (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Leemhuisa H, Pijning T, Justyna M et al (2013) Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163:250–272CrossRefGoogle Scholar
  30. 30.
    Gangoitia J, Pijning T, Dijkhuizen L (2018) Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnol Adv 36:196–207CrossRefGoogle Scholar
  31. 31.
    Hanada N, Kuramitsu HK (1989) Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun 57:2079–2085PubMedPubMedCentralGoogle Scholar
  32. 32.
    van Leeuwen SS, Kralj S, van Geel-Schutten IH, Gerwig GJ et al (2008) Structural analysis of the α-D-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme. Carbohydr Res 343:1237–1250PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kang HK, Oh JS, Kim D (2009) Molecular characterization and expression analysis of the glucansucrase DSRWC from Weissella cibaria synthesizing a α(1→6) glucan. FEMS Microbiol Lett 292:33–41PubMedCrossRefGoogle Scholar
  34. 34.
    Gavie EI (1984) Separation of species of the genus Leuconostoc and differentiation of the Leuconostoc from other lactic acid bacteria. In: Methods in microbiology (Bergan T Ed), vol 16. Academic Press, London, pp 147–178Google Scholar
  35. 35.
    Soetaert W, Sxhwengers D, Bucholz K, Vandamme EJ (1995) A wide range of carbohydrate modifications by a single microorganism: Leuconostoc mesenteroides. In: Pererson SB, Svensson B, Peterson S (eds) Carbohydrate Bioengineering, vol 10. Elsevier, Amsterdam, pp 351–358CrossRefGoogle Scholar
  36. 36.
    Monchois V, Remaud-Simeon M, Russell RR et al (1997) Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl Microbiol Biotechnol 48:465–472PubMedCrossRefGoogle Scholar
  37. 37.
    Passerini D, Vuillemin M, Ufarté L et al (2015) Inventory of the GH70 enzymes encoded by Leuconostoc citreum NRRL B-1299 -identification of three novel α-transglucosylases. FEBS J 282:2115–2130PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zannini E, Waters DM, Coffey A et al (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100:1121–1135PubMedCrossRefGoogle Scholar
  39. 39.
    Naessens M, Cerdobbel A, Soetaert W et al (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860CrossRefGoogle Scholar
  40. 40.
    Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    van Leeuwen SS, Kralj S, van Geel-Schutten IH et al (2008) Structural analysis of the α-D-glucan (EPS35-5) produced by the Lactobacillus reuteri strain 35-5 glucansucrase GTFA enzyme. Carbohydr Res 343:1251–1265PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fabre E, Bozonnet S, Arcache A et al (2005) Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly α-1,2 branched dextran. J Bacteriol 187:296–303PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Passerini D, Vuillemin M, Ufarté L et al (2015) Inventory of the GH70 enzymes encoded by Leuconostoc citreum NRRL B-1299 -identification of three novel α-transglucosylases. FEBS J 282:2115–2130PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Vuillemin M, Claverie M, Brison Y (2016) Characterization of the first α-(1→3) branching sucrases of the GH70 family. J Biol Chem 291:7687–7702PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Potocki de Montalk G, Remaud-Simeon M, Willemot RM et al (2000) Amylosucrase from Neisseria polysaccharea: novel catalytic properties. FEBS Lett 471:219–223PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Potocki-Veronese G, Putaux JL, Dupeyre D et al (2005) Amylose synthesized in vitro by amylosucrase: morphology, structure, and properties. Biomacromolecules 6:1000–1011PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Potocki de Montalk G, Remaud-Simeon M, Willemot RM et al (2000) Characterisation of the activator effect of glycogen on amylosucrase from Neisseria polysaccharea. FEMS Microbiol Lett 186:103108CrossRefGoogle Scholar
  48. 48.
    Putaux JL, Potockivéronèse G, Remaudsimeon M et al (2006) α-D-Glucan-based dendritic nanoparticles prepared by in vitro enzymatic chain extension of glycogen. Biomacromolecules 7:1720–1728PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Rolland-Sabaté A, Colonna P, Potocki-Véronèse G et al (2004) Elongation and insolubilisation of α-glucans by the action of Neisseria polysaccharea amylosucrase. J Cereal Sci 40:17–30CrossRefGoogle Scholar
  50. 50.
    Overwin H, Wray V, Hofer B (2015) Flavonoid glucosylation by non-Leloir glycosyltransferases: formation of multiple derivatives of 3,5,7,3′,4′-pentahydroxyflavane stereoisomers. Appl Microbiol Biotechnol 99:9565–9576PubMedCrossRefGoogle Scholar
  51. 51.
    Lim MC, Seo DH, Jung JH et al (2014) Enzymatic synthesis of amylose nanocomposite microbeads using amylosucrase from Deinococcus geothermalis. RSC Adv 4:26421–26424CrossRefGoogle Scholar
  52. 52.
    Lim MC, Lee GH, Huynh DTN et al (2015) Amylosucrase-mediated synthesis and self-assembly of amylose magnetic microparticles. RSC Adv 5:36088–36091CrossRefGoogle Scholar
  53. 53.
    Tsumori H, Kuramitsu H (1997) The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol Immunol 12:274–280PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang R, Zhang W, Hu T (2011) Dextran glucosidase: a potential target of iminosugars in caries prevention. Med Hypotheses 76:574–575PubMedCrossRefGoogle Scholar
  55. 55.
    Waldherr FW, Doll VM, Meissner D et al (2010) Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol 27:672–678PubMedCrossRefGoogle Scholar
  56. 56.
    Côte GL, Skory CD (2012) Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Appl Microbiol Biotechnol 93:2387–2394PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Puanglek S, Kimura S, Enomoto-Rogers Y et al (2016) In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties. Sci Rep 6:30479PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Puanglek S, Kimura S, Iwata T (2017) Thermal and mechanical properties of tailor-made unbranched α-1,3-glucan esters with various carboxylic acid chain length. Carbohydr Polym 169:245–254PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Buddanaa SK, Varanasia YVN, Shettya PR (2015) Fibrinolytic, anti-inflammatory and anti-microbial properties of α-(1→3)-glucans produced from Streptococcus mutans (MTCC 497). Carbohydr Polym 115:152–1159CrossRefGoogle Scholar
  60. 60.
    Huang Q, Zhang L (2011) Preparation, chain conformation and anti-tumor activities of water-soluble phosphated (1,3)-α-D-glucan from Poria cocos mycelia. Carbohydr Polym 83:1363–1369CrossRefGoogle Scholar
  61. 61.
    Kiho T, Yoshida I, Nagai K et al (1989) (1→3)-α-D-glucan from an alkaline extract of Agrocybe cylindracea and antitumor activity of its O-carboxymethylated derivatives. Carbohydr Res 189:273–279PubMedCrossRefGoogle Scholar
  62. 62.
    Wiater A, Paduch R, Choma A et al (2012) Biological study on carboxymethylated (1→3)-α-D-glucans from fruiting bodies of Ganoderma lucidum. Int J Biol Macromol 51:1014–1023PubMedCrossRefGoogle Scholar
  63. 63.
    Kobayashi K, Hasegawa T, Kusumi R et al (2017) Characterization of crystalline linear (1→3)-α-D-glucan synthesized in vitro. Carbohydr Polym 177:341–346PubMedCrossRefGoogle Scholar
  64. 64.
    Jelsma J, Kreger DR (1979) Polymorphism in crystalline (1→3)-α-D-glucan from fungal cell-walls. Carbohydr Res 71:51–64CrossRefGoogle Scholar
  65. 65.
    Ogawa K, Misaki A, Oka S et al (1979) X-ray diffraction data for (1→3) -α-D-glucan. Carbohydr Res 75:C13–C16CrossRefGoogle Scholar
  66. 66.
    Ogawa K, Okamura K, Sarko A (1981) Molecular and crystal structure of the regenerated form of (1→3)-α-D-glucan. Int J Biol Macromol 3:31–36CrossRefGoogle Scholar
  67. 67.
    Ogawa K, Yui T, Okamura K et al (1994) Crystalline features of streptococcal (1→3)-α-D-glucans of human saliva. Biosci Biotechnol Biochem 58:1326–1327CrossRefGoogle Scholar
  68. 68.
    Côté GL, Robyt JF (1982) Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1 →6), (1→3)- α-D-glucan. Carbohydr Res 101:57–74PubMedCrossRefGoogle Scholar
  69. 69.
    Arguello-Morales MA, Remaud-Simeon M, Pizzut S et al (2000) Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. FEMS Microbiol Lett 182:81–85PubMedCrossRefGoogle Scholar
  70. 70.
    Biely P, Côté GL, Burgess-Cassler A (1994) Purification and properties of alternanase, a novel endo-α-1,3-α-1,6-d-glucanase. J Biochem 226:633–639Google Scholar
  71. 71.
    Côté GL, Ahlgren JA (2001) The hydrolytic and transferase action of alternanase on oligosaccharides. Carbohydr Res 332:373–379PubMedCrossRefGoogle Scholar
  72. 72.
    Sawai T, Tohyama T, Natsume T (1978) Hydrolysis of fourteen native dextrans by Arthrobacter isomaltodextranase and correlation with dextran structure. Carbohydr Res 66:195–205CrossRefGoogle Scholar
  73. 73.
    Sawai T, Ohara S, Ichimi Y et al (1981) Purification and some properties of the isomaltodextranases Actinomadura strain R10 and comparison with that of Arthrobacter globiformis T6. Carbohydr Res 89:289–299CrossRefGoogle Scholar
  74. 74.
    Kralj S, van Geel-Schutten GH, van der Maarel MJ et al (2004) Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology 150:2099–2112PubMedCrossRefGoogle Scholar
  75. 75.
    Kralj S, Stripling E, Sanders P et al (2005) Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Appl Environ Microbiol 71:3942–3950PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Bezzate S, Steinmetz M, Aymerich S (1994) Cloning, sequencing, and disruption of a levanase gene of Bacillus polymyxa CF43. J Bacteriol 176:2177–2183PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Li Y, Triccas JA, Ferenci T (1997) A novel levansucrase-levanase gene cluster in Bacillus stearothermophilus ATCC12980. Biochim Biophys Acta 1353:203–208PubMedCrossRefGoogle Scholar
  78. 78.
    Steinmetz M, Le Coq D, Aymerich S et al (1985) The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet 200:220–228PubMedCrossRefGoogle Scholar
  79. 79.
    Tang LB, Lenstra R, Borchert TB et al (1990) Isolation and characterization of levansucrase encoding gene from Bacillus amyloliquefaciens. Gene 96:89–93PubMedCrossRefGoogle Scholar
  80. 80.
    Hartmeier W, Reiss M, Heidel M et al (1994) Biochemical and economical aspects of levan synthesis by Zymomonas mobilis. Biocatalysis 10:131–136CrossRefGoogle Scholar
  81. 81.
    Song KB, Joo HK, Rhee SK (1993) Nucleotide sequence of levansucrase gene (levU) of Zymomonas mobilis ZM1 (ATCC10988). Biochim Biophys Acta 1173:320–324PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Yanase H, Iwata M, Nakahigashi R et al (1992) Purification, crystallization and properties of the extracellular levansucrase from Zymomonas mobilis. Biosci Biotechnol Biochem 56:1335–1337CrossRefGoogle Scholar
  83. 83.
    Yanase H, Maeda M, Hagiwara E et al (2002) Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. J Biochem (Tokyo) 132:565–572CrossRefGoogle Scholar
  84. 84.
    Seibel J, Beine R, Moraru R et al (2006) A new pathway for the synthesis of oligosaccharides by the use of non-Leloir glycosyltransferases. Biocatal Biotransformation 24:157–165CrossRefGoogle Scholar
  85. 85.
    Seibel J, Jordening HJ, Buchholz K (2006) Glycosylation with activated sugars using glycosyltransferases and transglycosidases. Biocatal Biotransformation 24:311–342CrossRefGoogle Scholar
  86. 86.
    French AD, Waterhouse AL (1993) Chemical structure and characteristics. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press Inc, Boca Raton, pp 41–82Google Scholar
  87. 87.
    Dedonder R (1966) Levansucrase from Bacillus subtilis. In: Neufeld EF, Ginsburg V (eds) Methods in enzymology. Academic Press, New York, pp 500–505Google Scholar
  88. 88.
    Robyt JF (1998) Essentials of carbohydrate chemistry. Springer-Verlag, New YorkCrossRefGoogle Scholar
  89. 89.
    Ben Ammar Y, Matsubara T, Ito K et al (2002) Characterization of a thermostable levansucrase from Bacillus sp. TH4-2 capable of producing high molecular weight levan at high temperature. J Biotechnol 99:111–119PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Tanaka T, Oi S, Yamamoto T (1980) The molecular structure of low and high molecular weight levans synthesized by levansucrase. J Biochem (Tokyo) 87:297–303CrossRefGoogle Scholar
  91. 91.
    Tanaka T, Oi S, Yamamoto T (1979) Synthesis of levan by levansucrase some factors affecting the rate of synthesis and degree of polymerization of levan. J Biochem (Tokyo) 85:287293Google Scholar
  92. 92.
    Baciu IE, Jördening HJ, Seibel J et al (2005) Investigations of the transfructosylation reaction by fructosyltransferase from B. subtilis NCIMB 11871 for the synthesis of the sucrose analogue galactosyl-fructoside. J Biotechnol 116:347–357PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Seibel J, Moraru R, Götze S (2005) Biocatalytic and chemical investigations in the synthesis of sucrose analogues. Tetrahedron 61:7081–7086CrossRefGoogle Scholar
  94. 94.
    Seibel J, Moraru R, Götze S et al (2006) Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase). Carbohydr Res 341:2335–2349PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Seibel J, Hellmuth H, Hofer B et al (2006) Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays. Chembiochem 7:310–320PubMedCrossRefGoogle Scholar
  96. 96.
    Beine R, Moraru R, Nimtz M et al (2008) Synthesis of novel fructooligosaccharides by substrate and enzyme engineering. J Biotechnol 138:33–41PubMedCrossRefGoogle Scholar
  97. 97.
    Homann A, Seibel J (2009) Towards tailor-made oligosaccharides – chemo-enzymatic approaches by enzyme and substrate engineering. Appl Microbiol Biotechnol 83:209–216PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biomaterials Sciences, Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations