Synthesis of Polysaccharides II: Phosphorylase as Catalyst

  • Katja Loos
  • Jun-ichi KadokawaEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Oligo- and polysaccharides are important macromolecules in living systems, showing their multifunctional characteristics in the construction of cell walls, energy storage, cell recognition, and their immune response. The chemical synthesis of oligo- and polysaccharides is feasible though it can be laborious since multiple protection, deprotection, and purification steps are required. In contrast to this, phosphorylases are useful synthetic tools for the preparation of natural oligo- and polysaccharides, glycoconjugates, and their analogs. Since phosphorylases are rather tolerant with respect to utilizing modified donors and acceptor substrates, they can be used to prepare oligo- and polysaccharide analogs and for diversification of natural products. Their strict primer-dependence allows synthesis of interesting hybrid materials. Furthermore, enzymatic reaction, such as that using phosphorylase, is one of the most promising environmentally benign technologies with a simple operation under mild conditions, eliminating undesirable side reactions.


Enzymatic polymerization Phosphorylase Polysaccharide Glycomaterial Supramolecule 


  1. 1.
    Schuerch C (1986) Polysaccharides. In: Mark HF, Bilkales N, Overberger CG (eds) Encyclopedia of polymer science and engineering, vol 13, 2nd edn. John Wiley & Sons, New York, pp 87–162Google Scholar
  2. 2.
    Berg JM, Tymoczko JL, Stryer L (2012) Biochemistry, 7th edn. W.H. Freeman, New YorkGoogle Scholar
  3. 3.
    Williams R, Galan MC (2017) Recent advances in organocatalytic glycosylations. Eur J Org Chem 2017:6247–6264CrossRefGoogle Scholar
  4. 4.
    Paulsen H (1982) Advances in selective chemical syntheses of complex oligosaccharides. Angew Chem Int Ed Engl 21:155–173CrossRefGoogle Scholar
  5. 5.
    Schmidt RR (1986) New methods for the synthesis of glycosides and oligosaccharides—are there alternatives to the Koenigs-Knorr method? Angew Chem Int Ed Engl 25:212–235CrossRefGoogle Scholar
  6. 6.
    Toshima K, Tatsuta K (1993) Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem Rev 93:1503–1531CrossRefGoogle Scholar
  7. 7.
    Kobayashi S, Shoda S (1996) Enzymatic synthesis of polysaccharides: a new concept in polymerization chemistry. In: Kamachi M, Nakamura A (eds) New macromolecular architecture and functions. Springer, Heidelberg, pp 171–180CrossRefGoogle Scholar
  8. 8.
    Shoda S, Kobayashi S (1997) Recent developments in the use of enzymes in oligo- and polysaccharide synthesis. Trends Polym Sci 5:109–115Google Scholar
  9. 9.
    Shoda S, Fujita M, Kobayashi S (1998) Glycanase-catalyzed synthesis of non-natural oligosaccharides. Trends Glycosci Glycotechnol 10:279–289CrossRefGoogle Scholar
  10. 10.
    Kobayashi S, Shoda S, Donnelly M et al (1999) Enzymatic synthesis of cellulose. In: Bucke C (ed) Methods in biotechnology 10, Carbohydrate biotechnology protocols. Humana Press, Totowa, NJ, pp 57–69CrossRefGoogle Scholar
  11. 11.
    Kobayashi S, Kimura S (1999) In vitro biosynthesis of natural and unnatural polysaccharides catalyzed by isolated hydrolases. In: Steinbuechel A (ed) Biochemical principles and mechanism of biosynthesis and biodegradation of polymers. Wiley-VCH, Weinheim, Germany, pp 161–167Google Scholar
  12. 12.
    Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:3793–3818PubMedCrossRefGoogle Scholar
  13. 13.
    Kobayashi S, Sakamoto J, Kimura S (2001) In vitro synthesis of cellulose and related polysaccharides. Prog Polym Sci 26:1525–1560CrossRefGoogle Scholar
  14. 14.
    Shoda S, Izumi R, Fujita M (2003) Green process in glycotechnology. Bull Chem Soc Jpn 76:1–13CrossRefGoogle Scholar
  15. 15.
    Kobayashi S (2007) New developments of polysaccharide synthesis via enzymatic polymerization. Proc Jpn Acad Ser B 83:215–247CrossRefGoogle Scholar
  16. 16.
    Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353PubMedCrossRefGoogle Scholar
  17. 17.
    Makino A, Kobayashi S (2010) Chemistry of 2-oxazolines: a crossing of cationic ring-opening polymerization and enzymatic ring-opening polyaddition. J Polym Sci Polym Chem 48:1251–1270CrossRefGoogle Scholar
  18. 18.
    Kadokawa J, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14:145–153PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kadokawa J (2011) Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev 111:4308–4345PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Kobayashi S (2005) Challenge of synthetic cellulose. J Polym Sci Polym Chem 43:693–710CrossRefGoogle Scholar
  21. 21.
    Shoda S, Uyama H, Kadokawa J et al (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413PubMedCrossRefGoogle Scholar
  22. 22.
    Nagel B, Dellweg H, Gierasch LM (1992) Glossary for chemists of terms used in biotechnology. Pure Appl Chem 64:143–168CrossRefGoogle Scholar
  23. 23.
    Lairson LL, Henrissat B, Davies GJ et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Qian XP, Sujino K, Palcic MM et al (2002) Glycosyltransferases in oligosaccharide synthesis (Reprinted from Glycochemistry: principles, synthesis, and applications, pg 535-565, 2001). J Carbohydr Chem 21:911–942CrossRefGoogle Scholar
  25. 25.
    Davies GJ, Charnock SJ, Henrissat B (2001) The enzymatic synthesis of glycosidic bonds: “Glycosynthases” and glycosyltransferases. Trends Glycosci Glycotechnol 13:105–120CrossRefGoogle Scholar
  26. 26.
    Blixt O, Razi N (2008) In: Fraser-Reis B, Tatsuta K, Thiem J (eds) Glycoscience. Springer, BerlinGoogle Scholar
  27. 27.
    Song J, Zhang HC, Li L et al (2006) Enzymatic biosynthesis of oligosacch a rides and glycoconjugates. Curr Org Synth 3:159–168CrossRefGoogle Scholar
  28. 28.
    Jakeman DL, Withers SG (2002) Glycosynthases: new tools for oligosaccharide synthesis. Trends Glycosci Glycotechnol 14:13–25CrossRefGoogle Scholar
  29. 29.
    Feng J, Zhang P, Cui YL et al (2017) Regio- and stereospecific O-glycosylation of phenolic compounds catalyzed by a fungal glycosyltransferase from Mucor hiemalis. Adv Synth & Catal 359:995–1006CrossRefGoogle Scholar
  30. 30.
    Li YH, Xue MY, Sheng X et al (2016) Donor substrate promiscuity of bacterial beta 1-3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of beta 1-4-galactosyltransferases. Bioorg Med Chem 24:1696–1705PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Macdonald SS, Patel A, Larmour VLC et al (2018) Structural and mechanistic analysis of a beta-glycoside phosphorylase identified by screening a metagenomic library. J Biol Chem 293:3451–3467PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    McArthur JB, Chen X (2016) Glycosyltransferase engineering for carbohydrate synthesis. Biochem Soc Trans 44:129–142PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Palcic MM (2011) Glycosyltransferases as biocatalysts. Curr Opin Chem Biol 15:226–233PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kitaoka M, Hayashi K (2002) Carbohydrate-processing phosphorolytic enzymes. Trends Glycosci Glycotechnol 14:35–50CrossRefGoogle Scholar
  35. 35.
    Nakai H, Kitaoka M, Svensson B et al (2013) Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol 17:301–309PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Puchart V (2015) Glycoside phosphorylases: structure, catalytic properties and biotechnological potential. Biotechnol Adv 33:261–276PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Chaen H, Nishimoto T, Nakada T et al (2001) Enzymatic synthesis of kojioligosaccharides using kojibiose phosphorylase. J Biosci Bioeng 92:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kitaoka M, Sasaki T, Taniguchi H (1991) Synthesis of laminarioligosaccharides using crude extract of Euglena-gracilis Z-cells. Agric Biol Chem Tokyo 55:1431–1432Google Scholar
  39. 39.
    Nakajima M, Toyoizumi H, Abe K et al (2014) 1, 2-β-Oligoglucan phosphorylase from Listeria innocua. PLoS One 9:e92353PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    O'Neill EC, Field RA (2015) Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res 403:23–37PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kadokawa J (2016) Precision synthesis of functional polysaccharide materials by phosphorylase-catalyzed enzymatic reactions. Polymers 8:138. CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kadokawa J (2017) α-Glucan phosphorylase: a useful catalyst for precision enzymatic synthesis of oligo- and polysaccharides. Curr Org Chem 21:1192–1204CrossRefGoogle Scholar
  43. 43.
    Iwanow L (1902) Über die umwandlungen des phosphors beim keimen der wicke. Ber Deutsch Bot Ges 20:366–372Google Scholar
  44. 44.
    Zaleski W (1906) Über die rolle der enzyme bei der umwandlung organischer phosphorverbindungen in keimenden samen. Ber Deutsch Bot Ges 24:285–291Google Scholar
  45. 45.
    Zaleski W (1911) Über die rolle der nucleoproteide in den pflanzen. Ber Deutsch Bot Ges 29:146–155Google Scholar
  46. 46.
    Suzuki U, Yoshimura K, Takaishi M (1906) On the occurrence of an enzyme which decomposes anhydrooxymethylenephosphoric acid. Tokyo Kagaku Kaishi 27:1330–1342CrossRefGoogle Scholar
  47. 47.
    Bodńar J (1925) Biochemie des phosphorsäurestoffwechsels der höheren pflanzen. Über die enzymatische Überführung der anorganischen phosphorsäure in organische form. Biochem Z 165:1–15Google Scholar
  48. 48.
    Cori GT, Cori CF (1936) The formation of hexosephosphate esters in frog muscle. J Biol Chem 116:119–128Google Scholar
  49. 49.
    Cori GT, Cori CF (1936) An unusual case of esterification in muscle. J Biol Chem 116:129–132Google Scholar
  50. 50.
    Cori CF, Colowick SP, Cori GT (1937) The isolation and synthesis of glucose-1-phosphoric acid. J Biol Chem 121:465–477Google Scholar
  51. 51.
    Cori CF, Cori GT (1937) Formation of glucose-1-phosphoric acid in muscle extract. Proc Soc Exp Biol Med 36:119–122CrossRefGoogle Scholar
  52. 52.
    Kiessling W (1938) Preparation in a pure state of glucose 1 phosphoric acid (Cori-ester). Biochem Z 298:421–430Google Scholar
  53. 53.
    Wolfrom ML, Pletcher DE (1941) The structure of the Cori ester. J Am Chem Soc 63:1050–1053CrossRefGoogle Scholar
  54. 54.
    Palm D, Klein HW, Schinzel R et al (1990) The role of pyridoxal 5′-phosphate in glycogen-phosphorylase catalysis. Biochemistry 29:1099–1107PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Schäfner A, Specht H (1938) Über die amylasen der hefe und über die umsetzungen der glukose-1-phosphorsäure durch hefeextrakte. Naturwissenschaften 26:494–495CrossRefGoogle Scholar
  56. 56.
    Kiessling W (1939) Über ein neues fermentprotein der hefe und eine reversible enzymatische synthese des glykogens. Naturwissenschaften 27:129–130CrossRefGoogle Scholar
  57. 57.
    Cori CF, Schmidt G, Cori GT (1939) Synthesis of a polysaccharide from glucose-1-phosphate in muscle extract. Science 89:464–465PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hanes CS (1940) The breakdown and synthesis of starch by an enzyme system from pea seeds. Proc Roy Soc B 128:421–450Google Scholar
  59. 59.
    Ostern P, Holmes E (1939) Formation and breakdown of glycogen in the liver. Nature 144:34–34Google Scholar
  60. 60.
    Cori GT, Cori CF, Schmidt G (1939) The role of glucose-1-phosphate in the formation of blood sugar and synthesis of glycogen in the liver. J Biol Chem 129:629–639Google Scholar
  61. 61.
    Ostern P, Herbert D, Holmes E (1939) Formation and breakdown of glycogen in the liver. Biochem J 33:1858–1878PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Imberty A, Chanzy H, Perez S et al (1988) The double-helical nature of the crystalline part of A-starch. J Mol Biol 201:365–378PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Imberty A, Perez S (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers 27:1205–1221CrossRefGoogle Scholar
  64. 64.
    Kadokawa J, Kaneko Y (2013) Engineering of polysaccharide materials – by phosphorylase-catalyzed enzymatic chain-elongation. Pan Stanford Publishing Pte Ltd, SingaporeGoogle Scholar
  65. 65.
    Kadokawa J (2014) Chemoenzymatic synthesis of functional amylosic materials. Pure Appl Chem 86:701–709CrossRefGoogle Scholar
  66. 66.
    Omagari Y, Kadokawa J (2011) Synthesis of heteropolysaccharides having amylose chains using phosphorylase-catalyzed enzymatic polymerization. Kobunshi Ronbunshu 68:242–249CrossRefGoogle Scholar
  67. 67.
    Kadoakwa J (2012) Synthesis of amylose-grafted polysaccharide materials by phosphorylase-catalyzed enzymatic polymerization. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials. Vol 1043. ACS symposium series 1105. American Chemical Society, Washington, DC, pp 237–255Google Scholar
  68. 68.
    Kadoakwa J (2013) Synthesis of new polysaccharide materials by phosphorylase-catalyzed enzymatic α-glycosylations using polymeric glycosyl acceptors. In: Cheng HN, Gross RA, Smith PB (eds) Green polymer chemistry: biocatalysis and materials II. Vol 1144. ACS symposium series 1144. American Chemical Society, Washington, DC, pp 141–161Google Scholar
  69. 69.
    Nishimura T, Akiyoshi K (2016) Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9Google Scholar
  70. 70.
    Green DE, Stumpf PK (1942) Starch phosphorylase of potato. J Biol Chem 142:355–366Google Scholar
  71. 71.
    Weibull C, Tiselius A (1945) A study of the starch phosphorylase of potato. Arkiv för Kemi Mineralogi Och Geologi 19:1–25Google Scholar
  72. 72.
    Whelan WJ, Bailey JM (1954) The action pattern of potato phosphorylase. Biochem J 58:560–569PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pfannemüller B, Burchard W (1969) Difference in course of phosphorolytic synthesis of amylose with maltotriose and higher maltodextrines as initiators. Makromol Chem 121:1CrossRefGoogle Scholar
  74. 74.
    Pfannemüller B (1975) Living polymerization and enzymatic polysaccharide synthesis. Naturwissenschaften 62:231–233PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Suganuma T, Kitazono JI, Yoshinaga K et al (1991) Determination of kinetic-parameters for maltotriose and higher maltooligosaccharides in the reactions catalyzed by α-D-glucan phosphorylase from potato. Carbohydr Res 217:213–220CrossRefGoogle Scholar
  76. 76.
    Kadokawa J (2011) Facile synthesis of unnatural oligosaccharides by phosphorylase-catalyzed enzymatic glycosylations using new glycosyl donors. In: Gordon NS (ed) Oligosaccharides: sources, properties and applications. Nova Science Publishers, Inc., Hauppauge, pp 269–281Google Scholar
  77. 77.
    Kadokawa J (2013) Synthesis of non-natural oligosaccharides by α-glucan phosphorylase-catalyzed enzymatic glycosylations using analogue substrates of α-D-glucose 1-phosphate. Trends Glycosci Glycotechnol 25:57–69CrossRefGoogle Scholar
  78. 78.
    Kadoakwa J (2015) Enzymatic synthesis of non-natural oligo- and polysaccharides by phosphorylase-catalyzed glycosylations using analogue substrates. In: Cheng HN, Gross RA, Smith PB (eds) Green polymer chemistry: biobased materials and biocatalysis. Vol 1192. ACS symposium series 1192. American Chemical Society, Washington, DC, pp 87–99Google Scholar
  79. 79.
    Percival MD, Withers SG (1988) Applications of enzymes in the synthesis and hydrolytic study of 2-deoxy-α-D-glucopyranosyl phosphate. Can J Chem 66:1970–1972CrossRefGoogle Scholar
  80. 80.
    Evers B, Mischnick P, Thiem J (1994) Synthesis of 2-deoxy-α-D-arabino-hexopyranosyl phosphate and 2-deoxy-maltooligosaccharides with phosphorylase. Carbohydr Res 262:335–341PubMedCrossRefGoogle Scholar
  81. 81.
    Evers B, Thiem J (1997) Further syntheses employing phosphorylase. Bioorg Med Chem 5:857–863PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Nawaji M, Izawa H, Kaneko Y et al (2008) Enzymatic synthesis of α-D-xylosylated maltooligosaccharides by phosphorylase-catalyzed xylosylation. J Carbohydr Chem 27:214–222CrossRefGoogle Scholar
  83. 83.
    Nawaji M, Izawa H, Kaneko Y et al (2008) Enzymatic α-glucosaminylation of maltooligosaccharides catalyzed by phosphorylase. Carbohydr Res 343:2692–2696PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kawazoe S, Izawa H, Nawaji M et al (2010) Phosphorylase-catalyzed N-formyl-α-glucosaminylation of maltooligosaccharides. Carbohydr Res 345:631–636PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bhuiyan SH, Rus’d AA, Kitaoka M et al (2003) Characterization of a hyperthermostable glycogen phosphorylase from Aquifex aeolicus expressed in Escherichia coli. J Mol Catal 22:173–180CrossRefGoogle Scholar
  86. 86.
    Umegatani Y, Izawa H, Nawaji M et al (2012) Enzymatic α-glucuronylation of maltooligosaccharides using α-glucuronic acid 1-phosphate as glycosyl donor catalyzed by a thermostable phosphorylase from Aquifex aeolicus VF5. Carbohydr Res 350:81–85PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Takemoto Y, Izawa H, Umegatani Y et al (2013) Synthesis of highly branched anionic α-glucans by thermostable phosphorylase-catalyzed α-glucuronylation. Carbohydr Res 366:38–44PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Takata H, Takaha T, Okada S et al (1996) Cyclization reaction catalyzed by branching enzyme. J Bacteriol 178:1600–1606PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Takata H, Takaha T, Okada S et al (1996) Structure of the cyclic glucan produced from amylopectin by Bacillus stearothermophilus branching enzyme. Carbohydr Res 295:91–101PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Takata H, Takaha T, Nakamura H et al (1997) Production and some properties of a dextrin with a narrow size distribution by the cyclization reaction of branching enzyme. J Ferment Bioeng 84:119–123CrossRefGoogle Scholar
  91. 91.
    Takata Y, Shimohigoshi R, Yamamoto K et al (2014) Enzymatic synthesis of dendritic amphoteric α-glucans by thermostable phosphorylase catalysis. Macromol Biosci 14:1437–1443PubMedCrossRefGoogle Scholar
  92. 92.
    Shimohigoshi R, Takemoto Y, Yamamoto K et al (2013) Thermostable α-glucan phosphorylase-catalyzed successive α-mannosylations. Chem Lett 42:822–824CrossRefGoogle Scholar
  93. 93.
    Kadokawa J, Shimohigoshi R, Yamashita K et al (2015) Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate. Org Biomol Chem 13:4336–4343PubMedCrossRefGoogle Scholar
  94. 94.
    Borgerding J (1972) Phosphate deposits in digestion systems. J Water Pollut Control Fed 44:813–819Google Scholar
  95. 95.
    Yui T, Uto T, Nakauchida T et al (2018) Double helix formation from non-natural amylose analog polysaccharides. Carbohydr Polym 189:184–189PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Yamashita K, Yamamoto K, Kadoakwa J (2015) Synthesis of non-natural heteroaminopolysaccharides by α-glucan phosphorylase-catalyzed enzymatic copolymerization: α(1->4)-linked glucosaminoglucans. Biomacromolecules 16:3989–3994PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Baba R, Yamamoto K, Kadokawa J (2016) Synthesis of α(1-->4)-linked non-natural mannoglucans by alpha-glucan phosphorylase-catalyzed enzymatic copolymerization. Carbohydr Polym 151:1034–1039PubMedCrossRefGoogle Scholar
  98. 98.
    Nakauchida T, Takata Y, Yamamoto K et al (2016) Chemoenzymatic synthesis and pH-responsive properties of amphoteric block polysaccharides. Org Biomol Chem 14:6449–6456PubMedCrossRefGoogle Scholar
  99. 99.
    Sheth K, Alexander JK (1969) Purification and properties of β-1, 4-oligoglucan – orthophosphate glucosyltransferase from clostridium thermocellum. J Biol Chem 244:457–464PubMedGoogle Scholar
  100. 100.
    Samain E, Lancelonpin C, Ferigo F et al (1995) Phosphorolytic synthesis of cellodextrins. Carbohydr Res 271:217–226CrossRefGoogle Scholar
  101. 101.
    Nakai H, Hachem MA, Petersen BO et al (2010) Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Biochimie 92:1818–1826PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Petrovic DM, Kok I, Woortman AJ et al (2015) Characterization of oligocellulose synthesized by reverse phosphorolysis using different cellodextrin phosphorylases. Anal Chem 87:9639–9646PubMedCrossRefGoogle Scholar
  103. 103.
    Hiraishi M, Igarashi K, Kimura S et al (2009) Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase. Carbohydr Res 344:2468–2473PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Moreau V, Viladot JL, Samain E et al (1996) Design and chemoenzymatic synthesis of thiooligosaccharide inhibitors of 1,3:1,4-β-D-glucanases. Bioorg Med Chem 4:1849–1855PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hrmova M, Fincher GB, Viladot JL et al (1998) Chemoenzymic synthesis of (1 -> 3,1 -> 4)-β-D-glucooligosaccharides for subsite mapping of (1 ->,3,1 -> 4)-β-D-glucan endohydrolases. J Chem Soc Perk Trans 1:3571–3576CrossRefGoogle Scholar
  106. 106.
    Choudhury AK, Kitaoka M, Hayashi K (2003) Synthesis of a cellobiosylated dimer and trimer and of cellobiose-coated polyamidoamine (PAMAM) dendrimers to study accessibility of an enzyme, cellodextrin phosphorylase. Eur J Org Chem 2003:2462–2470CrossRefGoogle Scholar
  107. 107.
    Tran HG, Desmet T, Saerens K et al (2012) Biocatalytic production of novel glycolipids with cellodextrin phosphorylase. Bioresour Technol 115:84–87PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Okada H, Fukushi E, Onodera S et al (2003) Synthesis and structural analysis of five novel oligosaccharides prepared by glucosyltransfer from β-d-glucose 1-phosphate to isokestose and nystose using Thermoanaerobacter brockii kojibiose phosphorylase. Carbohydr Res 338:879–885PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Takahashi N, Okada H, Fukushi E et al (2005) Structural analysis of six novel oligosaccharides synthesized by glucosyl transfer from β-d-glucose 1-phosphate to raffinose and stachyose using Thermoanaerobacter brockii kojibiose phosphorylase. Tetrahedron Asymmetry 16:57–63CrossRefGoogle Scholar
  110. 110.
    Watanabe H, Higashiyama T, Aga H et al (2005) Enzymatic synthesis of a 2-O-α-D-glucopyranosyl cyclic tetrasaccharide by kojibiose phosphorylase. Carbohydr Res 340:449–454PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Takahashi N, Fukushi E, Onodera S et al (2007) Three novel oligosaccharides synthesized using Thermoanaerobacter brockii kojibiose phosphorylase. Chem Cent J 1:18PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Emmerling W, Pfannemüller B (1978) Block copolymers with monosaccharide, disaccharide and oligosaccharide side-chains linked through amide bonds. Chemiker-Zeitung 102:233–233Google Scholar
  113. 113.
    Emmerling WN, Pfannemüller B (1981) Preparative methods for the preparation of higher maltooligomers and their coupling with aliphatic diamines. Stärke 33:202–208CrossRefGoogle Scholar
  114. 114.
    Müller-Fahrnow A, Hilgenfeld R, Hesse H et al (1988) Amphiphile properties of synthetic glycolipids based on amide linkages 3. Molecular and crystal-structures of N-(normal-heptyl)-D-gluconamide and N-(normal-decyl)-D-gluconamide. Carbohydr Res 176:165–174CrossRefGoogle Scholar
  115. 115.
    Taravel FR, Pfannemüller B (1990) Amphiphilic properties of synthetic glycolipids based on amide linkages 4. C-13 NMR spectroscopic studies on the gelation of N-octyl-D-gluconamide in aqueous-solution. Makromol Chem 191:3097–3106CrossRefGoogle Scholar
  116. 116.
    Tuzov I, Cramer K, Pfannemüller B et al (1995) Molecular-structure of self-organized layers of N-octyl-D-gluconamide. Adv Mater 7:656–659CrossRefGoogle Scholar
  117. 117.
    Pfannemüller B, Schmidt M, Ziegast G et al (1984) Properties of a once-broken wormlike chain based on amylose tricarbanilate – light-scattering, viscosity, and dielectric-relaxation. Macromolecules 17:710–716CrossRefGoogle Scholar
  118. 118.
    Pfannemüller B, Kühn I (1988) Amphiphilic properties of synthetic glycolipids based on amide linkages 3. Temperature and concentration-dependence of the reduced viscosity of gel-forming alkyl gluconamides. Makromol Chem 189:2433–2442CrossRefGoogle Scholar
  119. 119.
    Emmerling WN, Pfannemüller B (1983) Chemical synthesis of branched polysaccharides.10. Polymers with monosaccharide and oligosaccharide side-chains linked by amide bonds. Makromol Chem 184:1441–1458CrossRefGoogle Scholar
  120. 120.
    Biermann M, Schmid K, Schulz P (1993) Alkylpolyglucosides – technology and properties. Stärke 45:281–288CrossRefGoogle Scholar
  121. 121.
    Hill K, Rhode O (1999) Sugar-based surfactants for consumer products and technical applications. Fett-Lipid 101:25–33CrossRefGoogle Scholar
  122. 122.
    von Rybinski W, Hill K (1998) Alkyl polyglycosides – properties and applications of a new class of surfactants. Angew Chem Int Ed Engl 37:1328–1345CrossRefGoogle Scholar
  123. 123.
    Niemann C, Nuck R, Pfannemüller B et al (1990) Phosphorolytic synthesis of low-molecular-weight amyloses with modified terminal groups. Carbohydr Res 197:187–196CrossRefGoogle Scholar
  124. 124.
    Ziegast G, Pfannemüller B (1987) Linear and star-shaped hybrid polymers 4. Phosphorolytic syntheses with di-functional, oligo-functional and multifunctional primers. Carbohydr Res 160:185–204CrossRefGoogle Scholar
  125. 125.
    Loos K, Stadler R (1997) Synthesis of amylose-block-polystyrene rod-coil block copolymers. Macromolecules 30:7641–7643CrossRefGoogle Scholar
  126. 126.
    Loos K, Müller AHE (2002) New routes to the synthesis of amylose-block-polystyrene rod-coil block copolymers. Biomacromolecules 3:368–373PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Loos K, Böker A, Zettl H et al (2005) Micellar aggregates of amylose-block-polystyrene rod-coil block copolymers in water and THF. Macromolecules 38:873–879CrossRefGoogle Scholar
  128. 128.
    Rachmawati R, de Gier HD, Woortman AJJ et al (2015) Synthesis of telechelic and three-arm polytetrahydrofuran-block-amylose. Macromol Chem Phys 216:1091–1102CrossRefGoogle Scholar
  129. 129.
    Tanaka T, Sasayama S, Yamamoto K et al (2015) Evaluating relative chain orientation of amylose and poly(L-lactide) in inclusion complexes formed by vine-twining polymerization using primer–guest conjugates. Macromol Chem Phys 216:794–800CrossRefGoogle Scholar
  130. 130.
    Kumar K, Woortman AJJ, Loos K (2015) Synthesis of amylose-b-P2VP block copolymers. Macromol Rapid Commun 36:2097–2101PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Akiyoshi K, Kohara M, Ito K et al (1999) Enzymatic synthesis and characterization of amphiphilic block copolymers of poly(ethylene oxide) and amylose. Macromol Rapid Commun 20:112–115CrossRefGoogle Scholar
  132. 132.
    Akiyoshi K, Maruichi N, Kohara M et al (2002) Amphiphilic block copolymer with a molecular recognition site: induction of a novel binding characteristic of amylose by self-assembly of poly(ethylene oxide)-block-amylose in chloroform. Biomacromolecules 3:280–283PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Ziegast G, Pfannemüller B (1984) Linear and star-shaped hybrid polymers 3. An improved purification procedure for coupling products of oligosaccharides by amide linkage. Makromol Chem 185:1855–1866CrossRefGoogle Scholar
  134. 134.
    Ziegast G, Pfannemüller B (1984) Linear and star-shaped hybrid polymers 1. A new method for the conversion of hydroxyl end groups of poly(oxyethylene) and other polyols into amino end groups. Makromol Chem Rapid Commun 5:363–371CrossRefGoogle Scholar
  135. 135.
    Ziegast G, Pfannemüller B (1984) Linear and star-shaped hybrid polymers 2. Coupling of monosaccharide and oligosaccharide to alpha, omega-diamino substituted poly(oxyethylene) and multifunctional amines by amide linkage. Makromol Chem Rapid Commun 5:373–379CrossRefGoogle Scholar
  136. 136.
    Calder PC (1991) Glycogen structure and biogenesis. Int J Biochem 23:1335–1352PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Manners DJ (1991) Recent developments in our understanding of glycogen structure. Carbohydr Polym 16:37–82CrossRefGoogle Scholar
  138. 138.
    Izawa H, Nawaji M, Kaneko Y et al (2009) Preparation of glycogen-based polysaccharide materials by phosphorylase-catalyzed chain elongation of glycogen. Macromol Biosci 9:1098–1104PubMedCrossRefGoogle Scholar
  139. 139.
    Takata Y, Yamamoto K, Kadokawa J (2015) Preparation of pH-responsive amphoteric glycogen hydrogels by α-glucan phosphorylase-catalyzed successive enzymatic reactions. Macromol Chem Phys 216:1415–1420CrossRefGoogle Scholar
  140. 140.
    Kobayashi K, Kamiya S, Enomoto N (1996) Amylose-carrying styrene macromonomer and its homo- and copolymers: synthesis via enzyme-catalyzed polymerization and complex formation with iodine. Macromolecules 29:8670–8676CrossRefGoogle Scholar
  141. 141.
    Narumi A, Kawasaki K, Kaga H et al (2003) Glycoconjugated polymer 6. Synthesis of poly[styrene-block-(styrene-graft-amylose)] via potato phosphorylase-catalyzed polymerization. Polym Bull 49:405–410CrossRefGoogle Scholar
  142. 142.
    von Braunmühl V, Jonas G, Stadler R (1995) Enzymatic grafting of amylose from poly(dimethylsiloxanes). Macromolecules 28:17–24CrossRefGoogle Scholar
  143. 143.
    Sasaki Y, Kaneko Y, Kadokawa J (2009) Chemoenzymatic synthesis of amylose-grafted polyacetylene by polymer reaction manner and its conversion into organogel with DMSO by cross-linking. Polym Bull 62:291–303CrossRefGoogle Scholar
  144. 144.
    Kaneko Y, Matsuda S, Kadokawa J (2010) Chemoenzymatic synthesis of amylose-grafted poly(vinyl alcohol). Polym Chem 1:193–197CrossRefGoogle Scholar
  145. 145.
    Nishimura T, Mukai S, Sawada S et al (2015) Glyco star polymers as helical multivalent host and biofunctional nano-platform. ACS Macro Lett 4:367–371CrossRefGoogle Scholar
  146. 146.
    Mazzocchetti L, Tsoufis T, Rudolf P et al (2014) Enzymatic synthesis of amylose brushes revisited: details from X-ray photoelectron spectroscopy and spectroscopic ellipsometry. Macromol Biosci 14:186–194PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Cao Z, Woortman AJJ, Rudolf P et al (2015) Facile synthesis and structural characterization of amylose-fatty acid inclusion complexes. Macromol Biosci 15:691–697PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Matsuda S, Kaneko Y, Kadokawa J (2007) Chemoenzymatic synthesis of amylose-grafted chitosan. Macromol Rapid Commun 28:863–867CrossRefGoogle Scholar
  149. 149.
    Kaneko Y, Matsuda S, Kadokawa J (2007) Chemoenzymatic syntheses of amylose-grafted chitin and chitosan. Biomacromolecules 8:3959–3964PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Omagari Y, Matsuda S, Kaneko Y et al (2009) Chemoenzymatic synthesis of amylose-grafted cellulose. Macromol Biosci 9:450–455PubMedCrossRefGoogle Scholar
  151. 151.
    Egashira N, Yamamoto K, Kadokawa J (2017) Enzymatic grafting of amylose on chitin nanofibers for hierarchical construction of controlled microstructures. In: Polym Chem, vol 8, p 3279Google Scholar
  152. 152.
    Tanaka K, Yamamoto K, Kadokawa J (2014) Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water. Carbohydr Res 398:25–30PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Omagari Y, Kaneko Y, Kadokawa J (2010) Chemoenzymatic synthesis of amylose-grafted alginate and its formation of enzymatic disintegratable beads. Carbohydr Polym 82:394–400CrossRefGoogle Scholar
  154. 154.
    Arimura T, Omagari Y, Yamamoto K et al (2011) Chemoenzymatic synthesis and hydrogelation of amylose-grafted xanthan gums. Int J Biol Macromol 49:498–503PubMedCrossRefGoogle Scholar
  155. 155.
    Kadokawa J, Arimura T, Takemoto Y et al (2012) Self-assembly of amylose-grafted carboxymethyl cellulose. Carbohydr Polym 90:1371–1377PubMedCrossRefGoogle Scholar
  156. 156.
    Hatanaka D, Takemoto Y, Yamamoto K et al (2013) Hierarchically self-assembled nanofiber films from amylose-grafted carboxymethyl cellulose. Fibers 2:34–44CrossRefGoogle Scholar
  157. 157.
    Kamiya S, Kobayashi K (1998) Synthesis and helix formation of saccharide-poly(L-glutamic acid) conjugates. Macromol Chem Phys 199:1589–1596CrossRefGoogle Scholar
  158. 158.
    Morimoto N, Yamazaki M, Tamada J et al (2013) Polysaccharide-hair cationic polypeptide nanogels: self-assembly and enzymatic polymerization of amylose primer-modified cholesteryl poly(L-lysine). Langmuir 29:7509–7514PubMedCrossRefGoogle Scholar
  159. 159.
    Shouji T, Yamamoto K, Kadokawa J (2017) Chemoenzyamtic synthesis and self-assembling gelation behavior of amylose-grafted poly(γ-glutamic acid). Int J Biol Macromol 97:99–105PubMedCrossRefGoogle Scholar
  160. 160.
    Sarko A, Zugenmaier P (1980) Crystal structures of amylose and its derivatives. In: French AD, Gardner KH (eds) Fiber diffraction methods. Vol 141. ACS symposium series 141. American Chemical Society, Washington, DC, pp 459–482CrossRefGoogle Scholar
  161. 161.
    Putseys JA, Lamberts L, Delcour JA (2010) Amylose-inclusion complexes: formation, identity and physico-chemical properties. J Cereal Sci 51:238–247CrossRefGoogle Scholar
  162. 162.
    Shogren RL (1993) Complexes of starch with telechelic poly(epsilon-caprolactone) phosphate. Carbohydr Polym 22:93–98CrossRefGoogle Scholar
  163. 163.
    Shogren RL, Greene RV, Wu YV (1991) Complexes of starch polysaccharides and poly(ethylene coacrylic acid) – structure and stability in solution. J Appl Polym Sci 42:1701–1709CrossRefGoogle Scholar
  164. 164.
    Star A, Steuerman DW, Heath JR et al (2002) Starched carbon nanotubes. Angew Chem Int Ed 41:2508–1512CrossRefGoogle Scholar
  165. 165.
    Ikeda M, Furusho Y, Okoshi K et al (2006) A luminescent poly(phenylenevinylene)-amylose composite with supramolecular liquid crystallinity. Angew Chem Int Ed 45:6491–6495CrossRefGoogle Scholar
  166. 166.
    Kumar K, Woortman AJJ, Loos K (2013) Synthesis of amylose-polystyrene inclusion complexes by a facile preparation route. Biomacromolecules 14:1955–1960PubMedCrossRefGoogle Scholar
  167. 167.
    Kaneko Y, Kadokawa J (2005) Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers. Chem Rec 5:36–46PubMedCrossRefGoogle Scholar
  168. 168.
    Kaneko Y, Kadokawa J (2006) Synthesis of nanostructured bio-related materials by hybridization of synthetic polymers with polysaccharides or saccharide residues. J Biomater Sci Polym Ed 17:1269–1284PubMedCrossRefGoogle Scholar
  169. 169.
    Kaneko Y, Beppu K, Kadokawa J (2009) Amylose selectively includes a specific range of molecular weights in poly(tetrahydrofuran)s in vine-twining polymerization. Polym J 41:792–796CrossRefGoogle Scholar
  170. 170.
    Kadokawa J (2012) Preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. Polymers 4:116–133CrossRefGoogle Scholar
  171. 171.
    Kadokawa J (2013) Architecture of amylose supramolecules in form of inclusion complexes by phosphorylase-catalyzed enzymatic polymerization. Biomolecules 3:369–385PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Orio S, Yamamoto K, Kadokawa J (2017) Preparation and material application of amylose-polymer inclusion complexes by enzymatic polymerization approach. Polymers 9:729. CrossRefPubMedCentralPubMedGoogle Scholar
  173. 173.
    Kadokawa J, Kaneko Y, Tagaya H et al (2001) Synthesis of an amylose-polymer inclusion complex by enzymatic polymerization of glucose 1-phosphate catalyzed by phosphorylase enzyme in the presence of polythf: a new method for synthesis of polymer-polymer inclusion complexes. Chem Commun 5:449–450CrossRefGoogle Scholar
  174. 174.
    Kadokawa J, Kaneko Y, Nagase S et al (2002) Vine-twining polymerization: amylose twines around polyethers to form amylose – polyether inclusion complexes. Chem Eur J 8:3321–3326PubMedCrossRefGoogle Scholar
  175. 175.
    Kadokawa J, Kaneko Y, Nakaya A et al (2001) Formation of an amylose-polyester inclusion complex by means of phosphorylase-catalyzed enzymatic polymerization of α-D-glucose 1-phosphate monomer in the presence of poly(ε-caprolactone). Macromolecules 34:6536–6538CrossRefGoogle Scholar
  176. 176.
    Kadokawa J, Nakaya A, Kaneko Y et al (2003) Preparation of inclusion complexes between amylose and ester-containing polymers by means of vine-twining polymerization. Macromol Chem Phys 204:1451–1457CrossRefGoogle Scholar
  177. 177.
    Nomura S, Kyutoku T, Shimomura N et al (2011) Preparation of inclusion complexes composed of amylose and biodegradable poly(glycolic acid-co-ε-caprolactone) by vine-twining polymerization and their lipase-catalyzed hydrolysis behavior. Polym J 43:971–977CrossRefGoogle Scholar
  178. 178.
    Kaneko Y, Beppu K, Kadokawa JI (2008) Preparation of amylose/polycarbonate inclusion complexes by means of vine-twining polymerization. Macromol Chem Phys 209:1037–1042CrossRefGoogle Scholar
  179. 179.
    Kaneko Y, Saito Y, Nakaya A et al (2008) Preparation of inclusion complexes composed of amylose and strongly hydrophobic polyesters in parallel enzymatic polymerization system. Macromolecules 41:5665–5670CrossRefGoogle Scholar
  180. 180.
    Kobayashi S, Uyama H, Suda S et al (1997) Dehydration polymerization in aqueous medium catalyzed by lipase. Chem Lett 26:105–105CrossRefGoogle Scholar
  181. 181.
    Suda S, Uyama H, Kobayashi S (1999) Dehydration polycondensation in water for synthesis of polyesters by lipase catalyst. Proc Jpn Acad B Phys 75:201–206CrossRefGoogle Scholar
  182. 182.
    Kaneko Y, Beppu K, Kadokawa JI (2007) Amylose selectively includes one from a mixture of two resemblant polyethers in vine-twining polymerization. Biomacromolecules 8:2983–2985PubMedCrossRefGoogle Scholar
  183. 183.
    Kaneko Y, Beppu K, Kyutoku T et al (2009) Selectivity and priority on inclusion of amylose toward guest polyethers and polyesters in vine-twining polymerization. Polym J 41:279–286CrossRefGoogle Scholar
  184. 184.
    Kaneko Y, Ueno K, Yui T et al (2011) Amylose’s recognition of chirality in polylactides on formation of inclusion complexes in vine-twining polymerization. Macromol Biosci 11:1407–1415PubMedCrossRefGoogle Scholar
  185. 185.
    Gotanda R, Yamamoto K, Kadokawa J (2016) Amylose stereoselectively includes poly(D-alanine) to form inclusion complex in vine-twining polymerization: a novel saccharide-peptide supramolecular conjugate. Macromol Chem Phys 217:1074CrossRefGoogle Scholar
  186. 186.
    Kaneko Y, Fujisaki K, Kyutoku T et al (2010) Preparation of enzymatically recyclable hydrogels through the formation of inclusion complexes of amylose in a vine-twining polymerization. Chem Asian J 5:1627–1633PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Kadokawa J, Nomura S, Hatanaka D et al (2013) Preparation of polysaccharide supramolecular films by vine-twining polymerization approach. Carbohydr Polym 98:611–617PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Kadokawa J, Tanaka K, Hatanaka D et al (2015) Preparation of multiformable supramolecular gels through helical complexation by amylose in vine-twining polymerization. Polym Chem 6:6402–6408CrossRefGoogle Scholar
  189. 189.
    Kadokawa J, Shoji T, Yamamoto K (2018) Preparation of supramolecular network materials by means of amylose helical assemblies. Polymer 140:73–79CrossRefGoogle Scholar
  190. 190.
    Tanaka T, Sasayama S, Nomura S et al (2013) An amylose-poly(L-lactide) inclusion supramolecular polymer: enzymatic synthesis by means of vine-twining polymerization using a primer-guest conjugate. Macromol Chem Phys 214:2829–2834CrossRefGoogle Scholar
  191. 191.
    Tanaka T, Tsutsui A, Gotanda R et al (2015) Synthesis of amylose-polyether inclusion supramolecular polymers by vine-twining polymerization using maltoheptaose-functionalized poly(tetrahydrofuran) as a primer-guest conjugate. J Appl Glycosci 62:135–141CrossRefGoogle Scholar
  192. 192.
    Tanaka T, Gotanda R, Tsutsui A et al (2015) Synthesis and gel formation of hyperbranched supramolecular polymer by vine-twining polymerization using branched primer-guest conjugate. Polymer 73:9–16CrossRefGoogle Scholar
  193. 193.
    Yataka Y, Sawada T, Serizawa T (2015) Enzymatic synthesis and post-functionalization of two-dimensional crystalline cellulose oligomers with surface-reactive groups. Chem Commun 51:12525–12528CrossRefGoogle Scholar
  194. 194.
    Serizawa T, Kato M, Okura H et al (2016) Hydrolytic activities of artificial nanocellulose synthesized via phosphorylase-catalyzed enzymatic reactions. Polym J 48:539–544CrossRefGoogle Scholar
  195. 195.
    Wang J, Niu J, Sawada T et al (2017) A bottom-up synthesis of vinyl-cellulose nanosheets and their nanocomposite hydrogels with enhanced strength. Biomacromolecules 18:4196–4205PubMedCrossRefGoogle Scholar
  196. 196.
    Serizawa T, Fukaya Y, Sawada T (2017) Self-assembly of cellulose oligomers into nanoribbon network structures based on kinetic control of enzymatic oligomerization. Langmuir 33:13415–13422PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Hata Y, Kojima T, Koizumi T et al (2017) Enzymatic synthesis of cellulose oligomer hydrogels composed of crystalline nanoribbon networks under macromolecular crowding conditions. ACS Macro Lett 6:165–170CrossRefGoogle Scholar
  198. 198.
    Hata Y, Sawada T, Serizawa T (2017) Effect of solution viscosity on the production of nanoribbon network hydrogels composed of enzymatically synthesized cellulose oligomers under macromolecular crowding conditions. Polym J 49:575–581CrossRefGoogle Scholar
  199. 199.
    Hata Y, Sawada T, Sakai T et al (2018) Enzyme-catalyzed bottom-up synthesis of mechanically and physicochemically stable cellulose hydrogels for spatial immobilization of functional colloidal particles. Biomacromolecules 19:1269–1275PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Nohara T, Sawada T, Tanaka H et al (2017) Enzymatic synthesis and protein adsorption properties of crystalline nanoribbons composed of cellulose oligomer derivatives with primary amino groups. J Biomater Sci Polym Ed 28:925–938PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Bae J, Lee D, Kim D et al (2005) Facile synthesis of glucose-1-phosphate from starch by Thermus caldophilus GK24 α-glucan phosphorylase. Process Biochem 40:3707–3713CrossRefGoogle Scholar
  202. 202.
    Fujii K, Takata H, Yanase M et al (2003) Bioengineering and application of novel glucose polymers. Biocatal Biotransformation 21:167–172CrossRefGoogle Scholar
  203. 203.
    van der Vlist J, Palomo Reixach M, van der Maarel M et al (2008) Synthesis of branched polyglucans by the tandem action of potato phosphorylase and Deinococcus geothermalis glycogen branching enzyme. Macromol Rapid Commun 29:1293–1297CrossRefGoogle Scholar
  204. 204.
    Kakutani R, Adachi Y, Kajiura H et al (2008) Stimulation of macrophage by enzymatically synthesized glycogen: the relationship between structure and biological activity. Biocatal Biotransformation 26:152–160CrossRefGoogle Scholar
  205. 205.
    Kajiura H, Kakutani R, Akiyama T et al (2008) A novel enzymatic process for glycogen production. Biocatal Biotransformation 26:133–140CrossRefGoogle Scholar
  206. 206.
    Takata H, Kajiura H, Furuyashiki T et al (2009) Fine structural properties of natural and synthetic glycogens. Carbohydr Res 344:654–659PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Takata H, Akiyama T, Kajiura H et al (2010) Application of branching enzyme in starch processing. Biocatal Biotransformation 28:60–63CrossRefGoogle Scholar
  208. 208.
    Kajiura H, Takata H, Akiyama T et al (2011) In vitro synthesis of glycogen: the structure, properties, and physiological function of enzymatically-synthesized glycogen. Biologia 66:387–394CrossRefGoogle Scholar
  209. 209.
    Hernandez JM, Gaborieau M, Castignolles P et al (2008) Mechanistic investigation of a starch-branching enzyme using hydrodynamic volume SEC analysis. Biomacromolecules 9:954–965PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Enomoto N, Furukawa S, Ogasawara Y et al (1996) Preparation of silica gel-bonded amylose through enzyme-catalyzed polymerization and chiral recognition ability of its phenylcarbamate derivative in HPLC. Anal Chem 68:2798–2804PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Loos K, von Braunmuhl V, Stadler R et al (1997) Saccharide modified silica particles by enzymatic grafting. Macromol Rapid Commun 18:927–938CrossRefGoogle Scholar
  212. 212.
    Morimoto N, Ogino N, Narita T et al (2007) Enzyme-responsive molecular assembly system with amylose-primer surfactants. J Am Chem Soc 129:458–459PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Morimoto N, Ogino N, Narita T et al (2009) Enzyme-responsive artificial chaperone system with amphiphilic amylose primer. J Biotechnol 140:246–249PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and EngineeringKagoshima UniversityKagoshimaJapan

Personalised recommendations